Mean curvature flow with obstacles
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 5, pp. 667-681
Voir la notice de l'article provenant de la source Numdam
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss an application of this result to the positive mean curvature flow.
DOI :
10.1016/j.anihpc.2012.03.002
Classification :
35R37, 35R45, 49J40, 49Q20, 53A10
Keywords: Obstacle problem, Mean curvature flow, Minimizing movements
Keywords: Obstacle problem, Mean curvature flow, Minimizing movements
@article{AIHPC_2012__29_5_667_0, author = {Almeida, L. and Chambolle, A. and Novaga, M.}, title = {Mean curvature flow with obstacles}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {667--681}, publisher = {Elsevier}, volume = {29}, number = {5}, year = {2012}, doi = {10.1016/j.anihpc.2012.03.002}, mrnumber = {2971026}, zbl = {1252.49072}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.03.002/} }
TY - JOUR AU - Almeida, L. AU - Chambolle, A. AU - Novaga, M. TI - Mean curvature flow with obstacles JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 667 EP - 681 VL - 29 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.03.002/ DO - 10.1016/j.anihpc.2012.03.002 LA - en ID - AIHPC_2012__29_5_667_0 ER -
%0 Journal Article %A Almeida, L. %A Chambolle, A. %A Novaga, M. %T Mean curvature flow with obstacles %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 667-681 %V 29 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.03.002/ %R 10.1016/j.anihpc.2012.03.002 %G en %F AIHPC_2012__29_5_667_0
Almeida, L.; Chambolle, A.; Novaga, M. Mean curvature flow with obstacles. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 5, pp. 667-681. doi: 10.1016/j.anihpc.2012.03.002
Cité par Sources :