Regularity in a one-phase free boundary problem for the fractional Laplacian
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 335-367

Voir la notice de l'article provenant de la source Numdam

For a one-phase free boundary problem involving a fractional Laplacian, we prove that “flat free boundaries” are C 1,α . We recover the regularity results of Caffarelli for viscosity solutions of the classical Bernoulli-type free boundary problem with the standard Laplacian.

@article{AIHPC_2012__29_3_335_0,
     author = {De Silva, D. and Roquejoffre, J.M.},
     title = {Regularity in a one-phase free boundary problem for the fractional {Laplacian}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {335--367},
     publisher = {Elsevier},
     volume = {29},
     number = {3},
     year = {2012},
     doi = {10.1016/j.anihpc.2011.11.003},
     zbl = {1251.35178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.11.003/}
}
TY  - JOUR
AU  - De Silva, D.
AU  - Roquejoffre, J.M.
TI  - Regularity in a one-phase free boundary problem for the fractional Laplacian
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 335
EP  - 367
VL  - 29
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.11.003/
DO  - 10.1016/j.anihpc.2011.11.003
LA  - en
ID  - AIHPC_2012__29_3_335_0
ER  - 
%0 Journal Article
%A De Silva, D.
%A Roquejoffre, J.M.
%T Regularity in a one-phase free boundary problem for the fractional Laplacian
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 335-367
%V 29
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.11.003/
%R 10.1016/j.anihpc.2011.11.003
%G en
%F AIHPC_2012__29_3_335_0
De Silva, D.; Roquejoffre, J.M. Regularity in a one-phase free boundary problem for the fractional Laplacian. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 335-367. doi: 10.1016/j.anihpc.2011.11.003

Cité par Sources :