Expanding measures
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 889-939

Voir la notice de l'article provenant de la source Numdam

We prove that any C 1+α transformation, possibly with a (non-flat) critical or singular region, admits an invariant probability measure absolutely continuous with respect to any expanding measure whose Jacobian satisfies a mild distortion condition. This is an extension to arbitrary dimension of a famous theorem of Keller (1990) [33] for maps of the interval with negative Schwarzian derivative.Given a non-uniformly expanding set, we also show how to construct a Markov structure such that any invariant measure defined on this set can be lifted. We used these structure to study decay of correlations and others statistical properties for general expanding measures.

@article{AIHPC_2011__28_6_889_0,
     author = {Pinheiro, Vilton},
     title = {Expanding measures},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {889--939},
     publisher = {Elsevier},
     volume = {28},
     number = {6},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.07.001},
     mrnumber = {2859932},
     zbl = {1254.37026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.07.001/}
}
TY  - JOUR
AU  - Pinheiro, Vilton
TI  - Expanding measures
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 889
EP  - 939
VL  - 28
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.07.001/
DO  - 10.1016/j.anihpc.2011.07.001
LA  - en
ID  - AIHPC_2011__28_6_889_0
ER  - 
%0 Journal Article
%A Pinheiro, Vilton
%T Expanding measures
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 889-939
%V 28
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.07.001/
%R 10.1016/j.anihpc.2011.07.001
%G en
%F AIHPC_2011__28_6_889_0
Pinheiro, Vilton. Expanding measures. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 6, pp. 889-939. doi: 10.1016/j.anihpc.2011.07.001

Cité par Sources :