A local symmetry result for linear elliptic problems with solutions changing sign
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 551-564

Voir la notice de l'article provenant de la source Numdam

We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω 2 u=-1 in Ω, u=0 on ∂Ω, and 1 |Ω| Ω 𝐧 u=c, for a given constant c, is the unit ball B 1 , if we assume that Ω lies in an appropriate class of Lipschitz domains.

@article{AIHPC_2011__28_4_551_0,
     author = {Canuto, B.},
     title = {A local symmetry result for linear elliptic problems with solutions changing sign},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {551--564},
     publisher = {Elsevier},
     volume = {28},
     number = {4},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.03.005},
     zbl = {1242.35182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.03.005/}
}
TY  - JOUR
AU  - Canuto, B.
TI  - A local symmetry result for linear elliptic problems with solutions changing sign
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 551
EP  - 564
VL  - 28
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.03.005/
DO  - 10.1016/j.anihpc.2011.03.005
LA  - en
ID  - AIHPC_2011__28_4_551_0
ER  - 
%0 Journal Article
%A Canuto, B.
%T A local symmetry result for linear elliptic problems with solutions changing sign
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 551-564
%V 28
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.03.005/
%R 10.1016/j.anihpc.2011.03.005
%G en
%F AIHPC_2011__28_4_551_0
Canuto, B. A local symmetry result for linear elliptic problems with solutions changing sign. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 551-564. doi: 10.1016/j.anihpc.2011.03.005

Cité par Sources :