Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 2, pp. 217-246

Voir la notice de l'article provenant de la source Numdam

We continue the study of Ambrosio and Serfaty (2008) [4] on the Chapman–Rubinstein–Schatzman–E evolution model for superconductivity, viewed as a gradient flow on the space of measures equipped with the quadratic Wasserstein structure. In Ambrosio and Serfaty (2008) [4] we considered the case of positive (probability) measures, while here we consider general real measures, as in the physical model. Understanding the evolution as a gradient flow in this context gives rise to several new questions, in particular how to define a “Wasserstein” distance for signed measures. We generalize the minimizing movement scheme of Ambrosio et al. (2005) [3] in this context, we show the entropy argument of Ambrosio and Serfaty (2008) [4] still carries through, and derive an evolution equation for the measure which contains an error term compared to the Chapman–Rubinstein–Schatzman–E model. Moreover, we also show the same applies to a very similar dissipative model on the whole plane.

@article{AIHPC_2011__28_2_217_0,
     author = {Ambrosio, Luigi and Mainini, Edoardo and Serfaty, Sylvia},
     title = {Gradient flow of the {Chapman{\textendash}Rubinstein{\textendash}Schatzman} model for signed vortices},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {217--246},
     publisher = {Elsevier},
     volume = {28},
     number = {2},
     year = {2011},
     doi = {10.1016/j.anihpc.2010.11.006},
     mrnumber = {2784070},
     zbl = {1233.49022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.006/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Mainini, Edoardo
AU  - Serfaty, Sylvia
TI  - Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 217
EP  - 246
VL  - 28
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.006/
DO  - 10.1016/j.anihpc.2010.11.006
LA  - en
ID  - AIHPC_2011__28_2_217_0
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Mainini, Edoardo
%A Serfaty, Sylvia
%T Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 217-246
%V 28
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.006/
%R 10.1016/j.anihpc.2010.11.006
%G en
%F AIHPC_2011__28_2_217_0
Ambrosio, Luigi; Mainini, Edoardo; Serfaty, Sylvia. Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 2, pp. 217-246. doi: 10.1016/j.anihpc.2010.11.006

Cité par Sources :