Continuous dependence for NLS in fractional order spaces
    
    
  
  
  
      
      
      
        
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 135-147
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Numdam
For the nonlinear Schrödinger equation in , local existence of solutions in is well known in the -subcritical and critical cases , where . However, even though the solution is constructed by a fixed-point technique, continuous dependence in does not follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial value in the sense that the local flow is continuous . If, in addition, then the flow is locally Lipschitz.
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1016/j.anihpc.2010.11.005
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35Q55, 35B30, 46E35
Keywords: Schrödinger's equation, Initial value problem, Continuous dependence, Fractional order Sobolev spaces, Besov spaces
                    
                    
                    
                  
                
                
                Keywords: Schrödinger's equation, Initial value problem, Continuous dependence, Fractional order Sobolev spaces, Besov spaces
@article{AIHPC_2011__28_1_135_0,
     author = {Cazenave, Thierry and Fang, Daoyuan and Han, Zheng},
     title = {Continuous dependence for {NLS} in fractional order spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {135--147},
     publisher = {Elsevier},
     volume = {28},
     number = {1},
     year = {2011},
     doi = {10.1016/j.anihpc.2010.11.005},
     mrnumber = {2765515},
     zbl = {1209.35124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.005/}
}
                      
                      
                    TY - JOUR AU - Cazenave, Thierry AU - Fang, Daoyuan AU - Han, Zheng TI - Continuous dependence for NLS in fractional order spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 135 EP - 147 VL - 28 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.005/ DO - 10.1016/j.anihpc.2010.11.005 LA - en ID - AIHPC_2011__28_1_135_0 ER -
%0 Journal Article %A Cazenave, Thierry %A Fang, Daoyuan %A Han, Zheng %T Continuous dependence for NLS in fractional order spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 135-147 %V 28 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.11.005/ %R 10.1016/j.anihpc.2010.11.005 %G en %F AIHPC_2011__28_1_135_0
Cazenave, Thierry; Fang, Daoyuan; Han, Zheng. Continuous dependence for NLS in fractional order spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 135-147. doi: 10.1016/j.anihpc.2010.11.005
Cité par Sources :
 
    