A kinetic model for coagulation–fragmentation
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836

Voir la notice de l'article provenant de la source Numdam

The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying the natural physical bounds, and assumptions of finite number of particles and finite L p -norm. We use the notion of renormalized solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-compactness methods in L 1 , allowed by L p -norms propagation.

@article{AIHPC_2010__27_3_809_0,
     author = {Broizat, Damien},
     title = {A kinetic model for coagulation{\textendash}fragmentation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {809--836},
     publisher = {Elsevier},
     volume = {27},
     number = {3},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.11.014},
     mrnumber = {2629881},
     zbl = {1190.82050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/}
}
TY  - JOUR
AU  - Broizat, Damien
TI  - A kinetic model for coagulation–fragmentation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 809
EP  - 836
VL  - 27
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/
DO  - 10.1016/j.anihpc.2009.11.014
LA  - en
ID  - AIHPC_2010__27_3_809_0
ER  - 
%0 Journal Article
%A Broizat, Damien
%T A kinetic model for coagulation–fragmentation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 809-836
%V 27
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/
%R 10.1016/j.anihpc.2009.11.014
%G en
%F AIHPC_2010__27_3_809_0
Broizat, Damien. A kinetic model for coagulation–fragmentation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836. doi: 10.1016/j.anihpc.2009.11.014

Cité par Sources :