A kinetic model for coagulation–fragmentation
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836
Voir la notice de l'article provenant de la source Numdam
The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying the natural physical bounds, and assumptions of finite number of particles and finite -norm. We use the notion of renormalized solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-compactness methods in , allowed by -norms propagation.
@article{AIHPC_2010__27_3_809_0, author = {Broizat, Damien}, title = {A kinetic model for coagulation{\textendash}fragmentation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {809--836}, publisher = {Elsevier}, volume = {27}, number = {3}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.014}, mrnumber = {2629881}, zbl = {1190.82050}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/} }
TY - JOUR AU - Broizat, Damien TI - A kinetic model for coagulation–fragmentation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 809 EP - 836 VL - 27 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/ DO - 10.1016/j.anihpc.2009.11.014 LA - en ID - AIHPC_2010__27_3_809_0 ER -
%0 Journal Article %A Broizat, Damien %T A kinetic model for coagulation–fragmentation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 809-836 %V 27 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.11.014/ %R 10.1016/j.anihpc.2009.11.014 %G en %F AIHPC_2010__27_3_809_0
Broizat, Damien. A kinetic model for coagulation–fragmentation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836. doi: 10.1016/j.anihpc.2009.11.014
Cité par Sources :