Integral representation of the n-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel
[Représentation intégrale pour la dérivée n-ième des fonctions de l’espace de de Branges-Rovnyak et la convergence en norme de son noyau reproduisant]
Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2113-2135

Voir la notice de l'article provenant de la source Numdam

In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces (b), where b is in the unit ball of H ( + ). In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces K b , where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel k ω,n b of evaluation of the n-th derivative of elements of (b) at the point ω as it tends radially to a point of the real axis.

Dans cet article, nous donnons une formule intégrale pour la valeur au bord des dérivées des fonctions de l’espace de de Branges-Rovnyak (b), où b est une fonction dans la boule unité de H ( + ). En particulier, nous généralisons un résultat d’Ahern-Clark obtenu pour les fonctions de l’espace modèle K b , où b est une fonction intérieure. En utilisant les séries hypergéométriques, nous obtenons une formule non-triviale de combinatoire concernant la somme de coefficients binômiaux. Puis, nous appliquons cette formule pour démontrer que le noyau reproduisant k ω,n b , correspondant à l’évaluation de la dérivée n-ième des fonctions de (b) au point ω, converge en norme lorsque ω tend radialement vers un point de l’axe réel.

DOI : 10.5802/aif.2408
Classification : 46E22, 47A15, 33C05, 05A19
Keywords: De Branges-Rovnyak spaces, model subspaces of $H^2$, integral representation, hypergeometric functions
Mots-clés : espaces de Branges-Rovnyak, sous-espaces modèle de $H^2$, représentation intégrale, fonctions hypergéométriques

Fricain, Emmanuel 1 ; Mashreghi, Javad 2

1 Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 43, boulevard du 11 Novembre 1918 69622 Villeurbanne (France)
2 Université Laval Département de Mathématiques et de Statistique Québec, QC 61VOA6 (Canada)
@article{AIF_2008__58_6_2113_0,
     author = {Fricain, Emmanuel and Mashreghi, Javad},
     title = {Integral representation of the $n$-th derivative in de {Branges-Rovnyak} spaces and the norm convergence of its reproducing kernel},
     journal = {Annales de l'Institut Fourier},
     pages = {2113--2135},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2408},
     zbl = {1159.46016},
     mrnumber = {2473631},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2408/}
}
TY  - JOUR
AU  - Fricain, Emmanuel
AU  - Mashreghi, Javad
TI  - Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 2113
EP  - 2135
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2408/
DO  - 10.5802/aif.2408
LA  - en
ID  - AIF_2008__58_6_2113_0
ER  - 
%0 Journal Article
%A Fricain, Emmanuel
%A Mashreghi, Javad
%T Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel
%J Annales de l'Institut Fourier
%D 2008
%P 2113-2135
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2408/
%R 10.5802/aif.2408
%G en
%F AIF_2008__58_6_2113_0
Fricain, Emmanuel; Mashreghi, Javad. Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2113-2135. doi: 10.5802/aif.2408

Cité par Sources :