Mixed Hodge structure of affine hypersurfaces
[Structures de Hodge mixtes d’hypersurfaces affines]
Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 775-801

Voir la notice de l'article provenant de la source Numdam

In this article we give an algorithm which produces a basis of the n-th de Rham cohomology of the affine smooth hypersurface f -1 (t) compatible with the mixed Hodge structure, where f is a polynomial in n+1 variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of f is given in terms of the vanishing of integrals of certain polynomial n-forms in n+1 over topological n-cycles on the fibers of f. Since the n-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.

Dans cet article nous donnons un algorithme qui produit une base du n-ième groupe de cohomology de De Rham de l’hypersurface affine lisse f -1 (t) compatible avec la structure de Hodge mixte, où f est un polynôme en n+1 variables et satisfait une condition de régularité à l’infini (en particulier, il a des singularités isolées). Comme application nous montrons que la notion de cycle de Hodge dans une fibre régulière de f est donnée par l’annulation des intégrales de certaines n-formes polynomiales dans n+1 sur des n-cycles topologiques dans les fibres de f. Puisque l’homologie de degré n d’une fibre régulière est engendrée par les cycles évanescents, cela conduit à étudier des intégrales abéliennes obtenues en intégrant sur ceux-ci. Notre résultat généralise et utilise les arguments de J. Steenbrink pour les polynômes quasi-homogènes.

DOI : 10.5802/aif.2276
Classification : 14C30, 32S35
Keywords: Mixed Hodge structures of affine varieties, Gauss-Manin connection
Mots-clés : problème d’appartenance, idéaux de polynômes, courant résidu, représentation intégrale

Movasati, Hossein 1

1 Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)
@article{AIF_2007__57_3_775_0,
     author = {Movasati, Hossein},
     title = {Mixed {Hodge} structure of affine hypersurfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {775--801},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2276},
     zbl = {1123.14007},
     mrnumber = {2336829},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2276/}
}
TY  - JOUR
AU  - Movasati, Hossein
TI  - Mixed Hodge structure of affine hypersurfaces
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 775
EP  - 801
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2276/
DO  - 10.5802/aif.2276
LA  - en
ID  - AIF_2007__57_3_775_0
ER  - 
%0 Journal Article
%A Movasati, Hossein
%T Mixed Hodge structure of affine hypersurfaces
%J Annales de l'Institut Fourier
%D 2007
%P 775-801
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2276/
%R 10.5802/aif.2276
%G en
%F AIF_2007__57_3_775_0
Movasati, Hossein. Mixed Hodge structure of affine hypersurfaces. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 775-801. doi: 10.5802/aif.2276

Cité par Sources :