Hamiltonian stability and subanalytic geometry
[Stabilité halmiltonienne et géométrie subanalytique]
Annales de l'Institut Fourier, Tome 56 (2006) no. 3, pp. 795-813

Voir la notice de l'article provenant de la source Numdam

In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function h which is real analytic around a compact set in n is steep if and only if its restriction to any affine subspace of n admits only isolated critical points. We also state a necessary condition for exponential stability, which is close to steepness.

Finally, we give methods to compute lower bounds for the steepness indices of an arbitrary steep function.

La notion de raideur a été introduite pour étudier la stabilité effective des systèmes Hamiltoniens quasi-intégrables. À l’aide de théorèmes de géométrie sous-analytique, on donne une condition géométrique simple qui est équivalente à la raideur pour une fonction réelle analytique.

DOI : 10.5802/aif.2200
Classification : 14P15, 32B20, 32S05, 37J40, 70H08, 70H09, 70H14
Keywords: Hamiltonian systems, stability, subanalytic geometry, curve selection lemma, Lojasiewicz’s inequalities
Mots-clés : systèmes Hamiltoniens, stabilité, géométrie sous-analytique, lemme du Petit Chemin, inégalités de Lojasiewicz

Niederman, Laurent 1

1 Université Paris XI Topologie et Dynamique UMR 8628 du CNRS Bât. 425, 91405 Orsay Cedex (France) IMCCE Astronomie et Systèmes Dynamiques UMR 8028 du CNRS 77 avenue Denfert-Rochereau, 75014 Paris (France)
@article{AIF_2006__56_3_795_0,
     author = {Niederman, Laurent},
     title = {Hamiltonian stability and subanalytic geometry},
     journal = {Annales de l'Institut Fourier},
     pages = {795--813},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {3},
     year = {2006},
     doi = {10.5802/aif.2200},
     zbl = {1120.14048},
     mrnumber = {2244230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.2200/}
}
TY  - JOUR
AU  - Niederman, Laurent
TI  - Hamiltonian stability and subanalytic geometry
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 795
EP  - 813
VL  - 56
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.2200/
DO  - 10.5802/aif.2200
LA  - en
ID  - AIF_2006__56_3_795_0
ER  - 
%0 Journal Article
%A Niederman, Laurent
%T Hamiltonian stability and subanalytic geometry
%J Annales de l'Institut Fourier
%D 2006
%P 795-813
%V 56
%N 3
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.2200/
%R 10.5802/aif.2200
%G en
%F AIF_2006__56_3_795_0
Niederman, Laurent. Hamiltonian stability and subanalytic geometry. Annales de l'Institut Fourier, Tome 56 (2006) no. 3, pp. 795-813. doi: 10.5802/aif.2200

Cité par Sources :