[Fonctions de Green sur des graphes auto-similaires et bornes pour le spectre du laplacien]
Voir la notice de l'article provenant de la source Numdam
Combining the study of the simple random walk on graphs, generating functions (especially Green functions), complex dynamics and general complex analysis we introduce a new method for spectral analysis on self-similar graphs.First, for a rather general, axiomatically defined class of self-similar graphs a graph theoretic analogue to the Banach fixed point theorem is proved. The subsequent results hold for a subclass consisting of “symmetrically” self-similar graphs which however is still more general then other axiomatically defined classes of self-similar graphs studied in this context before: we obtain functional equations and a decomposition algorithm for the Green functions of the simple random walk Markov transition operator . Their analytic continuations are given by rapidly converging expressions. We study the dynamics of a probability generating function associated with a random walk on a certain finite subgraph (“cell-graph”). The reciprocal spectrum coincides with the set of points in such that there is Green function which cannot be continued analytically from both half spheres in to . The Julia set of is an interval or a Cantor set. In the latter case is the set of singularities of all Green functions. Finally, we get explicit inner and outer bounds, where is the set of the -backward iterates of a finite set of real numbers.
Pour une classe de graphes auto-similaires, les prolongements analytiques de ses fonctions de Green peuvent être calculés explicitement. Si le spectre de l'opérateur de Markov n'est pas un intervalle, alors il coïncide avec l'ensemble des valeurs réciproques des singularités des fonctions de Green. Nous donnons des bornes intérieures et extérieures pour ce spectre.
Keywords: self-similar graphs, Green functions
Mots-clés : graphes auto-similaires, fonctions de Green
Krön, Bernhard 1
@article{AIF_2002__52_6_1875_0, author = {Kr\"on, Bernhard}, title = {Green functions on self-similar graphs and bounds for the spectrum of the laplacian}, journal = {Annales de l'Institut Fourier}, pages = {1875--1900}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {6}, year = {2002}, doi = {10.5802/aif.1937}, mrnumber = {1954327}, zbl = {1012.60063}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/} }
TY - JOUR AU - Krön, Bernhard TI - Green functions on self-similar graphs and bounds for the spectrum of the laplacian JO - Annales de l'Institut Fourier PY - 2002 SP - 1875 EP - 1900 VL - 52 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/ DO - 10.5802/aif.1937 LA - en ID - AIF_2002__52_6_1875_0 ER -
%0 Journal Article %A Krön, Bernhard %T Green functions on self-similar graphs and bounds for the spectrum of the laplacian %J Annales de l'Institut Fourier %D 2002 %P 1875-1900 %V 52 %N 6 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/ %R 10.5802/aif.1937 %G en %F AIF_2002__52_6_1875_0
Krön, Bernhard. Green functions on self-similar graphs and bounds for the spectrum of the laplacian. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1875-1900. doi: 10.5802/aif.1937
Cité par Sources :