Green functions on self-similar graphs and bounds for the spectrum of the laplacian
[Fonctions de Green sur des graphes auto-similaires et bornes pour le spectre du laplacien]
Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1875-1900

Voir la notice de l'article provenant de la source Numdam

Combining the study of the simple random walk on graphs, generating functions (especially Green functions), complex dynamics and general complex analysis we introduce a new method for spectral analysis on self-similar graphs.First, for a rather general, axiomatically defined class of self-similar graphs a graph theoretic analogue to the Banach fixed point theorem is proved. The subsequent results hold for a subclass consisting of “symmetrically” self-similar graphs which however is still more general then other axiomatically defined classes of self-similar graphs studied in this context before: we obtain functional equations and a decomposition algorithm for the Green functions of the simple random walk Markov transition operator P. Their analytic continuations are given by rapidly converging expressions. We study the dynamics of a probability generating function d associated with a random walk on a certain finite subgraph (“cell-graph”). The reciprocal spectrum spec -1 P={1/λλ spec P} coincides with the set of points z in ¯(-1,1) such that there is Green function which cannot be continued analytically from both half spheres in ¯ ¯ to z. The Julia set 𝒥 of d is an interval or a Cantor set. In the latter case spec -1 P is the set of singularities of all Green functions. Finally, we get explicit inner and outer bounds, 𝒥 spec -1 P𝒥𝒟, where 𝒟 is the set of the d-backward iterates of a finite set of real numbers.

Pour une classe de graphes auto-similaires, les prolongements analytiques de ses fonctions de Green peuvent être calculés explicitement. Si le spectre de l'opérateur de Markov n'est pas un intervalle, alors il coïncide avec l'ensemble des valeurs réciproques des singularités des fonctions de Green. Nous donnons des bornes intérieures et extérieures pour ce spectre.

DOI : 10.5802/aif.1937
Classification : 60J10, 30D05, 05C50
Keywords: self-similar graphs, Green functions
Mots-clés : graphes auto-similaires, fonctions de Green

Krön, Bernhard 1

1 Erwin Schrödinger Institute (ESI), Boltzmanngasse 9, 1090 Wien (Autriche)
@article{AIF_2002__52_6_1875_0,
     author = {Kr\"on, Bernhard},
     title = {Green functions on self-similar graphs and bounds for the spectrum of the laplacian},
     journal = {Annales de l'Institut Fourier},
     pages = {1875--1900},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     doi = {10.5802/aif.1937},
     mrnumber = {1954327},
     zbl = {1012.60063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/}
}
TY  - JOUR
AU  - Krön, Bernhard
TI  - Green functions on self-similar graphs and bounds for the spectrum of the laplacian
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1875
EP  - 1900
VL  - 52
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/
DO  - 10.5802/aif.1937
LA  - en
ID  - AIF_2002__52_6_1875_0
ER  - 
%0 Journal Article
%A Krön, Bernhard
%T Green functions on self-similar graphs and bounds for the spectrum of the laplacian
%J Annales de l'Institut Fourier
%D 2002
%P 1875-1900
%V 52
%N 6
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1937/
%R 10.5802/aif.1937
%G en
%F AIF_2002__52_6_1875_0
Krön, Bernhard. Green functions on self-similar graphs and bounds for the spectrum of the laplacian. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1875-1900. doi: 10.5802/aif.1937

Cité par Sources :