Central extensions of infinite-dimensional Lie groups
[Extensions centrales des groupes de Lie de dimension infinie]
Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1365-1442

Voir la notice de l'article provenant de la source Numdam

The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group G by an abelian group Z whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra cocycle to correspond to a locally group cocycle.

Le principal résultat de cet article est une suite exacte pour le groupe abélien des extensions centrales d’un groupe de Lie connexe G de dimension infinie par un groupe abélien de Lie Z pour lequel la composante connexe est un quotient d’un espace vectoriel par un sous-groupe discret. Un point essentiel de ce résultat est qu’il n’est pas restreint aux groupes lissement paracompacts. Par conséquence, il s’applique à tous les groupes de Lie-Banach et de Lie-Fréchet. La suite exacte codifie en particulier les obstructions précises pour l’intégration d’un cocycle d’algèbre de Lie à un cocycle localement lisse des groupes de Lie.

DOI : 10.5802/aif.1921
Classification : 22E65, 58B20, 58B05
Keywords: infinite-dimensional Lie group, invariant form, central extension, period map, Lie group cocycle, homotopy group, local cocycle, diffeomorphism group
Mots-clés : groupe de Lie de dimension infinie, forme différentielle invariante, extension centrale, application de période, cocycle de groupe de Lie, groupe d'homotopie, cocycle local, groupes de difféomorphisme

Neeb, Karl-Hermann 1

1 Technische Universität Darmstadt, Fachbereich Mathematik AG5, Schlossgartenstrasse 7, 64289 Darmstadt (Allemagne)
@article{AIF_2002__52_5_1365_0,
     author = {Neeb, Karl-Hermann},
     title = {Central extensions of infinite-dimensional {Lie} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1365--1442},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {5},
     year = {2002},
     doi = {10.5802/aif.1921},
     mrnumber = {1935553},
     zbl = {1019.22012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1921/}
}
TY  - JOUR
AU  - Neeb, Karl-Hermann
TI  - Central extensions of infinite-dimensional Lie groups
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1365
EP  - 1442
VL  - 52
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1921/
DO  - 10.5802/aif.1921
LA  - en
ID  - AIF_2002__52_5_1365_0
ER  - 
%0 Journal Article
%A Neeb, Karl-Hermann
%T Central extensions of infinite-dimensional Lie groups
%J Annales de l'Institut Fourier
%D 2002
%P 1365-1442
%V 52
%N 5
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1921/
%R 10.5802/aif.1921
%G en
%F AIF_2002__52_5_1365_0
Neeb, Karl-Hermann. Central extensions of infinite-dimensional Lie groups. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1365-1442. doi: 10.5802/aif.1921

Cité par Sources :