Universal reparametrization of a family of cycles : a new approach to meromorphic equivalence relations
Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1155-1189

Voir la notice de l'article provenant de la source Numdam

We study analytic families of non-compact cycles, and prove there exists an analytic space of finite dimension, which gives a universal reparametrization of such a family, under some assumptions of regularity. Then we prove an analogous statement for meromorphic families of non-compact cycles. That is a new approach to Grauert’s results about meromorphic equivalence relations.

Nous étudions des familles analytiques de cycles non-compacts, et prouvons qu’il existe un espace analytique de dimension finie, qui fournit une reparamétrisation universelle d’une telle famille, sous certaines conditions de régularité. Nous démontrons ensuite un résultat analogue pour les familles méromorphes de cycles non-compacts. C’est une nouvelle approche des résultats de Grauert sur les relations d’équivalence méromorphes.

@article{AIF_2000__50_4_1155_0,
     author = {Mathieu, David},
     title = {Universal reparametrization of a family of cycles : a new approach to meromorphic equivalence relations},
     journal = {Annales de l'Institut Fourier},
     pages = {1155--1189},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {4},
     year = {2000},
     doi = {10.5802/aif.1788},
     mrnumber = {2002c:32011},
     zbl = {0966.32003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1788/}
}
TY  - JOUR
AU  - Mathieu, David
TI  - Universal reparametrization of a family of cycles : a new approach to meromorphic equivalence relations
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1155
EP  - 1189
VL  - 50
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1788/
DO  - 10.5802/aif.1788
LA  - en
ID  - AIF_2000__50_4_1155_0
ER  - 
%0 Journal Article
%A Mathieu, David
%T Universal reparametrization of a family of cycles : a new approach to meromorphic equivalence relations
%J Annales de l'Institut Fourier
%D 2000
%P 1155-1189
%V 50
%N 4
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1788/
%R 10.5802/aif.1788
%G en
%F AIF_2000__50_4_1155_0
Mathieu, David. Universal reparametrization of a family of cycles : a new approach to meromorphic equivalence relations. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1155-1189. doi: 10.5802/aif.1788

Cité par Sources :