Systèmes linéaires adjoints L 2
Annales de l'Institut Fourier, Tome 49 (1999) no. 1, pp. 141-176

Voir la notice de l'article provenant de la source Numdam

Nous développons une version de la théorie d’indice L 2 d’Atiyah pour les faisceaux cohérents sur les variétés algébriques lisses et l’utilisons pour attaquer certaines questions de J. Kollár.

Soit X une variété complexe compacte projective algébrique lisse et connexe. Nous prouvons que si L est un diviseur nef et gros, tel que la restriction de K X +L à la fibre générale d’une application de Shafarevich est effective, K X +L est effectif.

Soit X une variété kählérienne compacte telle qu’il existe une classe de cohomologie de type (1,1) qui soit big et provienne du groupe fondamental de X. Nous prouvons que χ(X,K X )0. Si χ(X,K X )0, le revêtement universel de X porte une forme holomorphe L 2 de degré maximale non triviale. Si χ(X,K X )=0, nous prouvons que zéro est dans le spectre du laplacien sur les formes de degré moitié si le groupe fondamental est de croissance sous-exponentielle.

We adapt Atiyah’s L 2 -index theory to treat coherent sheaves on algebraic manifolds and use it as a tool to investigate certain questions posed by J. Kollár.

Let X be a connected projective algebraic compact complex manifold. We prove that, if L is a big and nef divisor on X, such that the restriction of K X +L to the general fiber of a Shafarevich map is effective, K X +L is effective.

Let X be a connected Kähler manifold such that some big cohomology class of type (1,1) is in the image of H 2 (π 1 (X),). We prove that χ(X,K X )0. Furthermore, if χ(X,K X ) is not 0, the universal covering space of X carries a non trivial L 2 holomorphic form of maximal degree. If χ(X,K X ) is zero, we prove that zero belongs to the spectrum of the Laplace-Beltrami operator on the middle degree forms, provided the fundamental group has subexponential growth.

@article{AIF_1999__49_1_141_0,
     author = {Eyssidieux, Philippe},
     title = {Syst\`emes lin\'eaires adjoints $L^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {141--176},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {1},
     year = {1999},
     doi = {10.5802/aif.1670},
     mrnumber = {2000d:32036},
     zbl = {0923.14004},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1670/}
}
TY  - JOUR
AU  - Eyssidieux, Philippe
TI  - Systèmes linéaires adjoints $L^2$
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 141
EP  - 176
VL  - 49
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1670/
DO  - 10.5802/aif.1670
LA  - fr
ID  - AIF_1999__49_1_141_0
ER  - 
%0 Journal Article
%A Eyssidieux, Philippe
%T Systèmes linéaires adjoints $L^2$
%J Annales de l'Institut Fourier
%D 1999
%P 141-176
%V 49
%N 1
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1670/
%R 10.5802/aif.1670
%G fr
%F AIF_1999__49_1_141_0
Eyssidieux, Philippe. Systèmes linéaires adjoints $L^2$. Annales de l'Institut Fourier, Tome 49 (1999) no. 1, pp. 141-176. doi: 10.5802/aif.1670

Cité par Sources :