On the complex and convex geometry of Ol'shanskii semigroups
Annales de l'Institut Fourier, Tome 48 (1998) no. 1, pp. 149-203

Voir la notice de l'article provenant de la source Numdam

To a pair of a Lie group G and an open elliptic convex cone W in its Lie algebra one associates a complex semigroup S=G Exp (iW) which permits an action of G×G by biholomorphic mappings. In the case where W is a vector space S is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain DS is Stein is and only if it is of the form G Exp (D h ), with DhiW convex, that each holomorphic function on D extends to the smallest biinvariant Stein domain containing D, and that biinvariant plurisubharmonic functions on D correspond to invariant convex functions on D h .

À tout cône ouvert elliptique convexe W dans l’algèbre de Lie d’un groupe de Lie G on associe un semi-groupe complexe S=G Exp (iW) qui permet une action holomorphe de G×G. Si W est l’algèbre de Lie toute entière, le semi-groupe S est un groupe complexe réductif. Dans cet article on montre que chaque semi-groupe S est une variété de Stein, qu’un domaine biinvariant DS est de Stein si et seulement si D=G Exp (D h )D h iW est convexe, que toute fonction holomorphe sur D s’étend au plus petit domaine de Stein contenant D, et que les fonctions biinvariantes plurisousharmoniques sur D correspondent aux fonctions convexes sur D h .

@article{AIF_1998__48_1_149_0,
     author = {Neeb, Karl-Hermann},
     title = {On the complex and convex geometry of {Ol'shanskii} semigroups},
     journal = {Annales de l'Institut Fourier},
     pages = {149--203},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {1},
     year = {1998},
     doi = {10.5802/aif.1614},
     mrnumber = {99e:22013},
     zbl = {0901.22003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1614/}
}
TY  - JOUR
AU  - Neeb, Karl-Hermann
TI  - On the complex and convex geometry of Ol'shanskii semigroups
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 149
EP  - 203
VL  - 48
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1614/
DO  - 10.5802/aif.1614
LA  - en
ID  - AIF_1998__48_1_149_0
ER  - 
%0 Journal Article
%A Neeb, Karl-Hermann
%T On the complex and convex geometry of Ol'shanskii semigroups
%J Annales de l'Institut Fourier
%D 1998
%P 149-203
%V 48
%N 1
%I Association des Annales de l’institut Fourier
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1614/
%R 10.5802/aif.1614
%G en
%F AIF_1998__48_1_149_0
Neeb, Karl-Hermann. On the complex and convex geometry of Ol'shanskii semigroups. Annales de l'Institut Fourier, Tome 48 (1998) no. 1, pp. 149-203. doi: 10.5802/aif.1614

Cité par Sources :