Voir la notice de l'article provenant de la source Numdam
In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on . This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for . The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of . In the proof the key estimates come from applying Meurman’s and Good’s results on -functions associated to holomorphic and Maass cusp forms. One also has to use classical transformation formulas for generalized hypergeometric functions of a unit argument.
Nous donnons la preuve d’une version microlocale d’un résultat de W. Luo et P. Sarnak concernant la répartition asymptotique des fonctions de Wigner associées aux séries d’Eisenstein sur . La preuve utilise les opérateurs de Hecke, et n’est donc valable que pour les sous-groupes de congruence de .
@article{AIF_1994__44_5_1477_0, author = {Jakobson, Dmitry}, title = {Quantum unique ergodicity for {Eisenstein} series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$}, journal = {Annales de l'Institut Fourier}, pages = {1477--1504}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {5}, year = {1994}, doi = {10.5802/aif.1442}, mrnumber = {96b:11068}, zbl = {0820.11040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1442/} }
TY - JOUR AU - Jakobson, Dmitry TI - Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$ JO - Annales de l'Institut Fourier PY - 1994 SP - 1477 EP - 1504 VL - 44 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1442/ DO - 10.5802/aif.1442 LA - en ID - AIF_1994__44_5_1477_0 ER -
%0 Journal Article %A Jakobson, Dmitry %T Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$ %J Annales de l'Institut Fourier %D 1994 %P 1477-1504 %V 44 %N 5 %I Association des Annales de l’institut Fourier %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1442/ %R 10.5802/aif.1442 %G en %F AIF_1994__44_5_1477_0
Jakobson, Dmitry. Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$. Annales de l'Institut Fourier, Tome 44 (1994) no. 5, pp. 1477-1504. doi: 10.5802/aif.1442
Cité par Sources :