Zeros of bounded holomorphic functions in strictly pseudoconvex domains in 2
Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458

Voir la notice de l'article provenant de la source Numdam

Let D be a bounded strictly pseudoconvex domain in 2 and let X be a positive divisor of D with finite area. We prove that there exists a bounded holomorphic function f such that X is the zero set of f. This result has previously been obtained by Berndtsson in the case where D is the unit ball in 2 .

Soit D un domaine strictement pseudoconvexe borné dans 2 , et soit X un diviseur positif de D d’aire finie. On montre l’existence d’une fonction bornée f dont X est l’ensemble des zéros de f. Ceci généralise un résultat de B. Berndtsson dans le cas où D est la boule unité de 2 .

@article{AIF_1993__43_2_437_0,
     author = {Arlebrink, Jim},
     title = {Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {437--458},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {2},
     year = {1993},
     doi = {10.5802/aif.1339},
     mrnumber = {94f:32021},
     zbl = {0782.32013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/}
}
TY  - JOUR
AU  - Arlebrink, Jim
TI  - Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 437
EP  - 458
VL  - 43
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/
DO  - 10.5802/aif.1339
LA  - en
ID  - AIF_1993__43_2_437_0
ER  - 
%0 Journal Article
%A Arlebrink, Jim
%T Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
%J Annales de l'Institut Fourier
%D 1993
%P 437-458
%V 43
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/
%R 10.5802/aif.1339
%G en
%F AIF_1993__43_2_437_0
Arlebrink, Jim. Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458. doi: 10.5802/aif.1339

Cité par Sources :