Zeros of bounded holomorphic functions in strictly pseudoconvex domains in
Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458
Voir la notice de l'article provenant de la source Numdam
Let be a bounded strictly pseudoconvex domain in and let be a positive divisor of with finite area. We prove that there exists a bounded holomorphic function such that is the zero set of . This result has previously been obtained by Berndtsson in the case where is the unit ball in .
Soit un domaine strictement pseudoconvexe borné dans , et soit un diviseur positif de d’aire finie. On montre l’existence d’une fonction bornée dont est l’ensemble des zéros de . Ceci généralise un résultat de B. Berndtsson dans le cas où est la boule unité de .
@article{AIF_1993__43_2_437_0,
author = {Arlebrink, Jim},
title = {Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$},
journal = {Annales de l'Institut Fourier},
pages = {437--458},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {43},
number = {2},
year = {1993},
doi = {10.5802/aif.1339},
mrnumber = {94f:32021},
zbl = {0782.32013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/}
}
TY - JOUR
AU - Arlebrink, Jim
TI - Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
JO - Annales de l'Institut Fourier
PY - 1993
SP - 437
EP - 458
VL - 43
IS - 2
PB - Institut Fourier
PP - Grenoble
UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/
DO - 10.5802/aif.1339
LA - en
ID - AIF_1993__43_2_437_0
ER -
%0 Journal Article
%A Arlebrink, Jim
%T Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$
%J Annales de l'Institut Fourier
%D 1993
%P 437-458
%V 43
%N 2
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1339/
%R 10.5802/aif.1339
%G en
%F AIF_1993__43_2_437_0
Arlebrink, Jim. Zeros of bounded holomorphic functions in strictly pseudoconvex domains in ${\mathbb {C}}^2$. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 437-458. doi: 10.5802/aif.1339
Cité par Sources :