On the existence of weighted boundary limits of harmonic functions
Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 811-833

Voir la notice de l'article provenant de la source Numdam

We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.

On étudie l’existence de limites tangentielles sur le bord dans un domaine lipschitzien, pour des fonctions harmoniques des classes de Orlicz-Sobolev. L’ensemble exceptionnel est évalué par rapport aux capacités de Bessel et aux mesures de Hausdorff.

@article{AIF_1990__40_4_811_0,
     author = {Mizuta, Yoshihiro},
     title = {On the existence of weighted boundary limits of harmonic functions},
     journal = {Annales de l'Institut Fourier},
     pages = {811--833},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {4},
     year = {1990},
     doi = {10.5802/aif.1236},
     mrnumber = {92g:31010},
     zbl = {0715.31002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1236/}
}
TY  - JOUR
AU  - Mizuta, Yoshihiro
TI  - On the existence of weighted boundary limits of harmonic functions
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 811
EP  - 833
VL  - 40
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1236/
DO  - 10.5802/aif.1236
LA  - en
ID  - AIF_1990__40_4_811_0
ER  - 
%0 Journal Article
%A Mizuta, Yoshihiro
%T On the existence of weighted boundary limits of harmonic functions
%J Annales de l'Institut Fourier
%D 1990
%P 811-833
%V 40
%N 4
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1236/
%R 10.5802/aif.1236
%G en
%F AIF_1990__40_4_811_0
Mizuta, Yoshihiro. On the existence of weighted boundary limits of harmonic functions. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 811-833. doi: 10.5802/aif.1236

Cité par Sources :