Quotients de fonctions entières et quotients de Hadamard de séries formelles
Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 737-752

Voir la notice de l'article provenant de la source Numdam

Dans cet article, nous démontrons deux résultats. L’un concerne les séries f (z)=a(n)z n /n! telles que a(n)x n est une série algébrique. Soit AE cet ensemble de fonctions. Si f appartient à AE, et si g(z) est un polynôme-exponentiel tel que h(z)=f(z)/g(z) est entière, alors il existe un polynôme P(z) tel que P(z)h(z) appartienne à AE.

L’autre résultat est parallèle au premier. Soit u(n)x n une série algébrique à coefficients dans un corps 𝕂 (qui est soit 𝕂, soit un corps quadratique imaginaire). Soit v(n)x n une série rationnelle à coefficients dans 𝕂. Avec quelques conditions restrictives sur la suite v(n), on montre que si a(n)=u(n)/v(n) est un entier de 𝕂 pour tout n, alors la série a(n)x n est une série algébrique.

In this paper, we prove two results. The first is about power series f(z)=a(n)z n /n! such that a(n)z n is an algebraic power series. Note by AE this set of functions. Let f in AE, g an exponential-polynomial, and suppose that h(z)=f(z)/g(z) is an entire functions. Then there exist a polynomial P such that P(z)h(z) belongs to AE.

The other result is the following. Let u(n)x n be an algebraic power series, and v(n)x n a rational power series with coefficients in 𝕂 (𝕂 is either , or a quadratic imaginary extension of ). Suppose that a(n)=u(n)/v(n) is an algebraic integer of 𝕂 for all n. With some additional conditions on the sequence v(n), we show that a(n)x n is also an algebraic power series.

@article{AIF_1989__39_3_737_0,
     author = {B\'ezivin, Jean-Pierre},
     title = {Quotients de fonctions enti\`eres et quotients de {Hadamard} de s\'eries formelles},
     journal = {Annales de l'Institut Fourier},
     pages = {737--752},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {3},
     year = {1989},
     doi = {10.5802/aif.1185},
     mrnumber = {90k:30002},
     zbl = {0701.30004},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1185/}
}
TY  - JOUR
AU  - Bézivin, Jean-Pierre
TI  - Quotients de fonctions entières et quotients de Hadamard de séries formelles
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 737
EP  - 752
VL  - 39
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1185/
DO  - 10.5802/aif.1185
LA  - fr
ID  - AIF_1989__39_3_737_0
ER  - 
%0 Journal Article
%A Bézivin, Jean-Pierre
%T Quotients de fonctions entières et quotients de Hadamard de séries formelles
%J Annales de l'Institut Fourier
%D 1989
%P 737-752
%V 39
%N 3
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1185/
%R 10.5802/aif.1185
%G fr
%F AIF_1989__39_3_737_0
Bézivin, Jean-Pierre. Quotients de fonctions entières et quotients de Hadamard de séries formelles. Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 737-752. doi: 10.5802/aif.1185

Cité par Sources :