Voir la notice de l'article provenant de la source Numdam
For a function (where is a real algebraic manifold) the following problem is studied. If is an algebraic subvariety of , can be approximated by rational regular functions such that
We find that this is possible if and only if there exists a rational regular function such that and g(x) for any in . Similar results are obtained also in the analytic and in the Nash cases.
For non approximable functions the minimal flatness locus is also studied.
On démontre que l’obstruction à approcher une fonction , dont le lieu de zéro est un ensemble algébrique ou analytique (défini par des équations globables), par des fonctions régulières ayant les mêmes zéros, est seulement la signature sur le complémentaire de .
@article{AIF_1989__39_3_611_0, author = {Broglia, F. and Tognoli, A.}, title = {Approximation of $C^\infty $-functions without changing their zero-set}, journal = {Annales de l'Institut Fourier}, pages = {611--632}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {3}, year = {1989}, doi = {10.5802/aif.1178}, mrnumber = {90k:32023}, zbl = {0673.14017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1178/} }
TY - JOUR AU - Broglia, F. AU - Tognoli, A. TI - Approximation of $C^\infty $-functions without changing their zero-set JO - Annales de l'Institut Fourier PY - 1989 SP - 611 EP - 632 VL - 39 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1178/ DO - 10.5802/aif.1178 LA - en ID - AIF_1989__39_3_611_0 ER -
%0 Journal Article %A Broglia, F. %A Tognoli, A. %T Approximation of $C^\infty $-functions without changing their zero-set %J Annales de l'Institut Fourier %D 1989 %P 611-632 %V 39 %N 3 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1178/ %R 10.5802/aif.1178 %G en %F AIF_1989__39_3_611_0
Broglia, F.; Tognoli, A. Approximation of $C^\infty $-functions without changing their zero-set. Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 611-632. doi: 10.5802/aif.1178
Cité par Sources :