The trace inequality and eigenvalue estimates for Schrödinger operators
Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 207-228

Voir la notice de l'article provenant de la source Numdam

Suppose Φ is a nonnegative, locally integrable, radial function on R n , which is nonincreasing in |x|. Set (Tf)(x)= R n Φ(x-y)f(y)dy when f0 and xR n . Given 1<p< and v0, we show there exists C>0 so that R n (Tf)(x) p v(x)dxC R n f(x) p dx for all f0, if and only if C >0 exists with Q T(x Q v)(x) p dxC Q v(x)dx< for all dyadic cubes Q, where p =p/(p-1). This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.

Soit Φ une fonction radiale, non négative, localement intégrable sur R n , qui ne s’accroît pas en |x|. Posons (Tf)(x)= R n Φ(x-y)f(y)dyf0 et xR n . Étant donné 1<p< et v0, nous démontrons qu’il existe C>0 de sorte que R n (Tf)(x) p v(x)dxC R n f(x) p dx pour tout f0, si et seulement si, C >0 existe avec Q T(x Q v)(x) p dxC Q v(x)dx< pour tout cube dyadique Q, où p =p/(p-1).

On se sert de ce résultat pour raffiner des approximations récentes de la part de C.L. Fefferman et D.H. Phong de la distribution de valeurs propres d’opérateurs de Schrödinger.

@article{AIF_1986__36_4_207_0,
     author = {Kerman, R. and Sawyer, Eric T.},
     title = {The trace inequality and eigenvalue estimates for {Schr\"odinger} operators},
     journal = {Annales de l'Institut Fourier},
     pages = {207--228},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {36},
     number = {4},
     year = {1986},
     doi = {10.5802/aif.1074},
     mrnumber = {88b:35150},
     zbl = {0591.47037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1074/}
}
TY  - JOUR
AU  - Kerman, R.
AU  - Sawyer, Eric T.
TI  - The trace inequality and eigenvalue estimates for Schrödinger operators
JO  - Annales de l'Institut Fourier
PY  - 1986
SP  - 207
EP  - 228
VL  - 36
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.1074/
DO  - 10.5802/aif.1074
LA  - en
ID  - AIF_1986__36_4_207_0
ER  - 
%0 Journal Article
%A Kerman, R.
%A Sawyer, Eric T.
%T The trace inequality and eigenvalue estimates for Schrödinger operators
%J Annales de l'Institut Fourier
%D 1986
%P 207-228
%V 36
%N 4
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.1074/
%R 10.5802/aif.1074
%G en
%F AIF_1986__36_4_207_0
Kerman, R.; Sawyer, Eric T. The trace inequality and eigenvalue estimates for Schrödinger operators. Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 207-228. doi: 10.5802/aif.1074

Cité par Sources :