Choquet simplexes whose set of extreme points is -analytic
Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 195-206
Voir la notice de l'article provenant de la source Numdam
We construct a Choquet simplex whose set of extreme points is -analytic, but is not a -Borel set. The set has the surprising property of being a set in its Stone-Cech compactification. It is hence an example of a set that is not absolute.
On construit un simplexe de Choquet dont l’ensemble des points extrémaux est -analytique, mais n’est pas -Borélien. L’ensemble est un dans sa compactification de Stone-Cech. C’est donc un exemple d’ensemble qui n’est pas absolu.
@article{AIF_1985__35_3_195_0, author = {Talagrand, Michel}, title = {Choquet simplexes whose set of extreme points is $K$-analytic}, journal = {Annales de l'Institut Fourier}, pages = {195--206}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {3}, year = {1985}, doi = {10.5802/aif.1024}, mrnumber = {87a:46022}, zbl = {0564.46008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.1024/} }
TY - JOUR AU - Talagrand, Michel TI - Choquet simplexes whose set of extreme points is $K$-analytic JO - Annales de l'Institut Fourier PY - 1985 SP - 195 EP - 206 VL - 35 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.1024/ DO - 10.5802/aif.1024 LA - en ID - AIF_1985__35_3_195_0 ER -
%0 Journal Article %A Talagrand, Michel %T Choquet simplexes whose set of extreme points is $K$-analytic %J Annales de l'Institut Fourier %D 1985 %P 195-206 %V 35 %N 3 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.1024/ %R 10.5802/aif.1024 %G en %F AIF_1985__35_3_195_0
Talagrand, Michel. Choquet simplexes whose set of extreme points is $K$-analytic. Annales de l'Institut Fourier, Tome 35 (1985) no. 3, pp. 195-206. doi: 10.5802/aif.1024
Cité par Sources :