Sur une extension du problème de Gleason dans les domaines pseudoconvexes
Annales de l'Institut Fourier, Tome 34 (1984) no. 4, pp. 67-74

Voir la notice de l'article provenant de la source Numdam

Dans cet article on montre que toute fA (D ¯) a une décomposition f(z)-f(w)= i=1 n g i (z,w)(z i -w i ) avec g i A (D×D ¯) pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.

In this paper we prove that every fA (D ¯) has a decomposition f(z)-f(w)= i=1 n g i (z,w)(z i -w i ) with g i A (D×D ¯), for all pseudoconvex domains with real-analytic boundary, as well as for pseudoconvex domains for which the result holds true locally.

@article{AIF_1984__34_4_67_0,
     author = {Ortega, Joaquin M.},
     title = {Sur une extension du probl\`eme de {Gleason} dans les domaines pseudoconvexes},
     journal = {Annales de l'Institut Fourier},
     pages = {67--74},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {34},
     number = {4},
     year = {1984},
     doi = {10.5802/aif.988},
     mrnumber = {86c:32012},
     zbl = {0525.32017},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.988/}
}
TY  - JOUR
AU  - Ortega, Joaquin M.
TI  - Sur une extension du problème de Gleason dans les domaines pseudoconvexes
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 67
EP  - 74
VL  - 34
IS  - 4
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.988/
DO  - 10.5802/aif.988
LA  - fr
ID  - AIF_1984__34_4_67_0
ER  - 
%0 Journal Article
%A Ortega, Joaquin M.
%T Sur une extension du problème de Gleason dans les domaines pseudoconvexes
%J Annales de l'Institut Fourier
%D 1984
%P 67-74
%V 34
%N 4
%I Imprimerie Durand
%C 28 - Luisant
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.988/
%R 10.5802/aif.988
%G fr
%F AIF_1984__34_4_67_0
Ortega, Joaquin M. Sur une extension du problème de Gleason dans les domaines pseudoconvexes. Annales de l'Institut Fourier, Tome 34 (1984) no. 4, pp. 67-74. doi: 10.5802/aif.988

Cité par Sources :