Unique continuation for Schrödinger operators in dimension three or less
Annales de l'Institut Fourier, Tome 34 (1984) no. 3, pp. 189-200

Voir la notice de l'article provenant de la source Numdam

We show that the differential inequality |Δu|v|u| has the unique continuation property relative to the Sobolev space H loc 2,1 (Ω), ΩR n , n3, if v satisfies the condition

( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0

for all compact KΩ, where if n=2, we replace |x-y| 2-n by -log|x-y|. This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, H=-Δ+v, in the case n3. The proof uses Carleman’s approach together with the following pointwise inequality valid for all N=0,1,2,... and any uH c 2,1 (R 3 -{0}),

| u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .

Nous démontrons que l’inégalité différentielle |Δu|v|u| a la propriété de prolongement unique se rapportant à l’espace Sobolev H loc 2,1 (Ω), ΩR n , n3, si v satisfait la condition

( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0

pour tout compact KΩ, où, si n=2, nous remplaçons |x-y| 2-n par -log|x-y|. Ceci résout une conjecture par B. Simon ayant trait au prolongement unique pour les opérateurs de Schrödinger, H=-Δ+v, dans le cas où n3. La preuve utilise une approche du type Carleman de concours avec l’inégalité suivante, valable pour tout N=0,1,2,... et n’importe quel uH c 2,1 (R 3 -{0}),

| u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .

@article{AIF_1984__34_3_189_0,
     author = {Sawyer, Eric T.},
     title = {Unique continuation for {Schr\"odinger} operators in dimension three or less},
     journal = {Annales de l'Institut Fourier},
     pages = {189--200},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     number = {3},
     year = {1984},
     doi = {10.5802/aif.982},
     mrnumber = {86i:35034},
     zbl = {0535.35007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.982/}
}
TY  - JOUR
AU  - Sawyer, Eric T.
TI  - Unique continuation for Schrödinger operators in dimension three or less
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 189
EP  - 200
VL  - 34
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/aif.982/
DO  - 10.5802/aif.982
LA  - en
ID  - AIF_1984__34_3_189_0
ER  - 
%0 Journal Article
%A Sawyer, Eric T.
%T Unique continuation for Schrödinger operators in dimension three or less
%J Annales de l'Institut Fourier
%D 1984
%P 189-200
%V 34
%N 3
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/aif.982/
%R 10.5802/aif.982
%G en
%F AIF_1984__34_3_189_0
Sawyer, Eric T. Unique continuation for Schrödinger operators in dimension three or less. Annales de l'Institut Fourier, Tome 34 (1984) no. 3, pp. 189-200. doi: 10.5802/aif.982

Cité par Sources :