Regular holomorphic images of balls
Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36
Voir la notice de l'article provenant de la source Numdam
Every -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in under a finite holomorphic map that is locally biholomorphic.
Pour toute variété complexe à dimensions qui est connexe, paracompacte et Hausdorff, il y a une submersion holomorphe de la boule unité de sur qui est finie.
@article{AIF_1982__32_2_23_0, author = {Fornaess, John Erik and Stout, Edgar Lee}, title = {Regular holomorphic images of balls}, journal = {Annales de l'Institut Fourier}, pages = {23--36}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {2}, year = {1982}, doi = {10.5802/aif.871}, mrnumber = {84h:32026}, zbl = {0452.32008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.871/} }
TY - JOUR AU - Fornaess, John Erik AU - Stout, Edgar Lee TI - Regular holomorphic images of balls JO - Annales de l'Institut Fourier PY - 1982 SP - 23 EP - 36 VL - 32 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.871/ DO - 10.5802/aif.871 LA - en ID - AIF_1982__32_2_23_0 ER -
Fornaess, John Erik; Stout, Edgar Lee. Regular holomorphic images of balls. Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36. doi: 10.5802/aif.871
Cité par Sources :