Voir la notice de l'article provenant de la source Numdam
L’article étudie le compactifié de Martin d’un domaine lipschitzien relativement à un opérateur elliptique à coefficients hödériens ; on étend aux fonctions -harmoniques et aux fonctions -harmoniques adjointes sur une estimation de -Carleson pour le cas , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions -harmoniques sur . Conséquences : , et normalisée en ; un théorème de type Fatou-Doob sur l’existence de limites angulaires.
On construit un domaine plan dont les compactifiés relativement à et à ne sont pas homéomorphes, et un domaine contenant un angle et tel que ne soit pas une base de filtre convergente dans le compactifié de .
We study the Martin compactification of a Lipschitz domain, with respect to an elliptic operator : we show, for -harmonic functions and adjoint -harmonic functions, an estimate due to -Carleson when . We use that result to obtain a “Harnack Boundary Principle” related to the behaviour of -harmonic functions. We can then obtain, the existence and uniqueness of a -kernel functions at each , as well as a Fatou-Doob type theorem on non tangential limits for quotients of -harmonic functions. We construct a planar domain whose Martin compactification with respect to and are not homeomorphics, and a domain including an angle such that the net is not converging in the usual compactification of .
@article{AIF_1978__28_4_169_0, author = {Ancona, Alano}, title = {Principe de {Harnack} \`a la fronti\`ere et th\'eor\`eme de {Fatou} pour un op\'erateur elliptique dans un domaine lipschitzien}, journal = {Annales de l'Institut Fourier}, pages = {169--213}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {4}, year = {1978}, doi = {10.5802/aif.720}, mrnumber = {80d:31006}, zbl = {0377.31001}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.720/} }
TY - JOUR AU - Ancona, Alano TI - Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien JO - Annales de l'Institut Fourier PY - 1978 SP - 169 EP - 213 VL - 28 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.720/ DO - 10.5802/aif.720 LA - fr ID - AIF_1978__28_4_169_0 ER -
%0 Journal Article %A Ancona, Alano %T Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien %J Annales de l'Institut Fourier %D 1978 %P 169-213 %V 28 %N 4 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.720/ %R 10.5802/aif.720 %G fr %F AIF_1978__28_4_169_0
Ancona, Alano. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Annales de l'Institut Fourier, Tome 28 (1978) no. 4, pp. 169-213. doi: 10.5802/aif.720
Cité par Sources :