Voir la notice de l'article provenant de la source Numdam
Sufficient conditions are given in order that, for a bounded closed convex subset of a locally convex space , the set of continuous functions from the compact space into , is the uniformly closed convex hull in of its extreme points. Applications are made to the unit ball of bounded (or compact, or weakly compact) operators from certain Banach spaces into .
On donne des conditions suffisantes sous lesquelles, pour un convexe borné fermé d’un espace localement convexe réel , l’ensemble [des fonctions continues de l’espace compact dans ] est l’enveloppe convexe uniformément fermée dans de ses points extrémaux. On applique ces résultats à la boule unité de l’espace d’opérateurs bornés (ou compacts, ou faiblement compacts) de certains espaces de Banach dans .
@article{AIF_1970__20_2_45_0, author = {Phelps, Robert R.}, title = {Theorems of {Krein} {Milman} type for certain convex sets of functions operators}, journal = {Annales de l'Institut Fourier}, pages = {45--54}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {2}, year = {1970}, doi = {10.5802/aif.351}, mrnumber = {44 #4501}, zbl = {0195.40807}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/aif.351/} }
TY - JOUR AU - Phelps, Robert R. TI - Theorems of Krein Milman type for certain convex sets of functions operators JO - Annales de l'Institut Fourier PY - 1970 SP - 45 EP - 54 VL - 20 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/aif.351/ DO - 10.5802/aif.351 LA - en ID - AIF_1970__20_2_45_0 ER -
%0 Journal Article %A Phelps, Robert R. %T Theorems of Krein Milman type for certain convex sets of functions operators %J Annales de l'Institut Fourier %D 1970 %P 45-54 %V 20 %N 2 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/aif.351/ %R 10.5802/aif.351 %G en %F AIF_1970__20_2_45_0
Phelps, Robert R. Theorems of Krein Milman type for certain convex sets of functions operators. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 45-54. doi: 10.5802/aif.351
Cité par Sources :