Entropie polynomiale des homéomorphismes de Brouwer
Annales Henri Lebesgue, Tome 2 (2019), pp. 39-57

Voir la notice de l'article provenant de la source Numdam

Nous nous proposons d’étudier l’entropie polynomiale de la composante errante de n’importe quel système dynamique topologique inversible. Pour illustrer cette étude, nous calculerons l’entropie polynomiale de divers homéomorphismes de Brouwer, qui sont les homéomorphismes du plan sans point fixe et préservant l’orientation. En particulier, nous verrons que l’entropie polynomiale de tels homéomorphismes peut prendre n’importe quelle valeur supérieure ou égale à 2.

We study the polynomial entropy of the wandering part of any invertible dynamical system on a compact metric space. As an application we compute the polynomial entropy of Brouwer homeomorphisms (fixed point free orientation preserving homeomorphisms of the plane), and show in particular that it takes every real value greater or equal to 2. (An english version of this text may be found on ArXiv [HLR17])

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/ahl.12
Classification : 37E30, 37B40
Mots-clés : polynomial entropy, Brouwer homeomorphisms, wandering set

Hauseux, Louis 1 ; Le Roux, Frédéric 2

1 101 Ter rue des Sources 92160 Antony (France)
2 Institut de Mathématiques de Jussieu - Paris Rive Gauche Sorbonne Université - Campus Pierre et Marie Curie 4, place Jussieu 75252 Paris Cedex 05 (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2019__2__39_0,
     author = {Hauseux, Louis and Le Roux, Fr\'ed\'eric},
     title = {Entropie polynomiale des hom\'eomorphismes de {Brouwer}},
     journal = {Annales Henri Lebesgue},
     pages = {39--57},
     publisher = {\'ENS Rennes},
     volume = {2},
     year = {2019},
     doi = {10.5802/ahl.12},
     zbl = {1423.37044},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ahl.12/}
}
TY  - JOUR
AU  - Hauseux, Louis
AU  - Le Roux, Frédéric
TI  - Entropie polynomiale des homéomorphismes de Brouwer
JO  - Annales Henri Lebesgue
PY  - 2019
SP  - 39
EP  - 57
VL  - 2
PB  - ÉNS Rennes
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ahl.12/
DO  - 10.5802/ahl.12
LA  - fr
ID  - AHL_2019__2__39_0
ER  - 
%0 Journal Article
%A Hauseux, Louis
%A Le Roux, Frédéric
%T Entropie polynomiale des homéomorphismes de Brouwer
%J Annales Henri Lebesgue
%D 2019
%P 39-57
%V 2
%I ÉNS Rennes
%U http://geodesic.mathdoc.fr/articles/10.5802/ahl.12/
%R 10.5802/ahl.12
%G fr
%F AHL_2019__2__39_0
Hauseux, Louis; Le Roux, Frédéric. Entropie polynomiale des homéomorphismes de Brouwer. Annales Henri Lebesgue, Tome 2 (2019), pp. 39-57. doi: 10.5802/ahl.12

Cité par Sources :