There are no exotic ladder surfaces
Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1007-1023
Voir la notice de l'article provenant de la source Journal.fi
It is an open problem to provide a characterization of quasiconformally homogeneous Riemann surfaces. We show that given the current literature, this problem can be broken into four open cases with respect to the topology of the underlying surface. The main result is a characterization in one of these open cases; in particular, we prove that every quasiconformally homogeneous ladder surface is quasiconformally equivalent to a regular cover of a closed surface (or, in other words, there are no exotic ladder surfaces).
Keywords:
Quasiconformal mappings, quasiconformal homogeneity, Riemann surfaces, infinite-type surfaces
Affiliations des auteurs :
Ara Basmajian 1 ; Nicholas G. Vlamis 2
@article{AFM_2022_47_2_a18,
author = {Ara Basmajian and Nicholas G. Vlamis},
title = {There are no exotic ladder surfaces},
journal = {Annales Fennici Mathematici},
pages = {1007--1023},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2022_47_2_a18/}
}
Ara Basmajian; Nicholas G. Vlamis. There are no exotic ladder surfaces. Annales Fennici Mathematici, Tome 47 (2022) no. 2, pp. 1007-1023. http://geodesic.mathdoc.fr/item/AFM_2022_47_2_a18/