Voir la notice de l'article provenant de la source Journal.fi
$I_{\alpha}$ |
satisfies $n-\alpha p<\beta\leq n$, $\alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_\ast}$ and $\frac{\lambda_\ast}{q}\leq \frac{\lambda}{p}$. Our result provide a new class of functions spaces which is larger than previous ones, since we have strict continuous inclusions $\dot{B}_{p,\infty}^{s}\hookrightarrow L^{\lambda, \infty}\hookrightarrow \mathcal{M}_{p}^{\lambda}\hookrightarrow\mathcal{M}_{p, \infty}^{\lambda}$ as $1 and $s\in\mathbf{R}$ satisfies $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. If $d\mu$ is concentrated on $\partial\mathbf{R}^n_+$, as a byproduct we get Sobolev-Morrey trace inequality on half-spaces $\mathbf{R}^n_+$ which recovers the well-known Sobolev-trace inequality in $L^p(\mathbf{R}^n_+)$. Also, by a suitable analysis on non-doubling Calderón-Zygmund decomposition we show that
$\Vert M_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)} \sim \Vert I_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)}$
provided that $\mu(B_r(x))\sim r^{\beta}$ on support $\text{spt}(\mu)$ and $n-\alpha <\beta\leq n$ with $0<\alpha
Marcelo F. de Almeida 1 ; Lidiane S. M. Lima 2
@article{AFM_2021_46_2_a32, author = {Marcelo F. de Almeida and Lidiane S. M. Lima}, title = {Adams{\textquoteright} trace principle in {Morrey{\textendash}Lorentz} spaces on {\ensuremath{\beta}-Hausdorff} dimensional surfaces}, journal = {Annales Fennici Mathematici}, pages = {1161--1177}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/} }
TY - JOUR AU - Marcelo F. de Almeida AU - Lidiane S. M. Lima TI - Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces JO - Annales Fennici Mathematici PY - 2021 SP - 1161 EP - 1177 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/ LA - en ID - AFM_2021_46_2_a32 ER -
%0 Journal Article %A Marcelo F. de Almeida %A Lidiane S. M. Lima %T Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces %J Annales Fennici Mathematici %D 2021 %P 1161-1177 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/ %G en %F AFM_2021_46_2_a32
Marcelo F. de Almeida; Lidiane S. M. Lima. Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1161-1177. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/