Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1161-1177.

Voir la notice de l'article provenant de la source Journal.fi

In this paper we strengthen to Morrey-Lorentz spaces the famous trace principle introduced by Adams. More precisely, we show that Riesz potential
$I_{\alpha}$
is continuous   $\Vert I_{\alpha}f\Vert_{\mathcal{M}_{q, \infty}^{\lambda_{\ast}}(d\mu)}\lesssim \Arrowvert\mu\Arrowvert_{\beta}^{{1}/{q}}\,\Vert f\Vert_{\mathcal{M}_{p, \infty}^{\lambda}(d\nu)}$   if and only if the Radon measure $d\mu$ supported in $\Omega\subset \mathbf{R}^n$ is controlled by $\Vert\mu\Vert_{\beta}=\sup_{x\in\mathbf{R}^n,\,r>0}r^{-\beta}\mu(B(x,r))<\infty$ provided that $1 satisfies $n-\alpha p<\beta\leq n$, $\alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_\ast}$ and $\frac{\lambda_\ast}{q}\leq \frac{\lambda}{p}$. Our result provide a new class of functions spaces which is larger than previous ones, since we have strict continuous inclusions $\dot{B}_{p,\infty}^{s}\hookrightarrow L^{\lambda, \infty}\hookrightarrow \mathcal{M}_{p}^{\lambda}\hookrightarrow\mathcal{M}_{p, \infty}^{\lambda}$ as $1 and $s\in\mathbf{R}$ satisfies $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. If $d\mu$ is concentrated on $\partial\mathbf{R}^n_+$, as a byproduct we get Sobolev-Morrey trace inequality on half-spaces $\mathbf{R}^n_+$ which recovers the well-known Sobolev-trace inequality in $L^p(\mathbf{R}^n_+)$. Also, by a suitable analysis on non-doubling Calderón-Zygmund decomposition we show that   $\Vert M_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)} \sim \Vert I_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)}$ provided that $\mu(B_r(x))\sim r^{\beta}$ on support $\text{spt}(\mu)$ and $n-\alpha <\beta\leq n$ with $0<\alpha. This result extends the previous ones.  
Keywords: Riesz potential, trace inequality, Morrey-Lorentz spaces, non-doubling measure

Marcelo F. de Almeida 1 ; Lidiane S. M. Lima 2

1 Universidade Federal de Sergipe, Departamento de Matemática
2 Universidade Federal de Goiás, IME - Departamento de Matemática
@article{AFM_2021_46_2_a32,
     author = {Marcelo F. de Almeida and Lidiane S. M. Lima},
     title = {Adams{\textquoteright} trace principle in {Morrey{\textendash}Lorentz} spaces on {\ensuremath{\beta}-Hausdorff} dimensional surfaces},
     journal = {Annales Fennici Mathematici},
     pages = {1161--1177},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/}
}
TY  - JOUR
AU  - Marcelo F. de Almeida
AU  - Lidiane S. M. Lima
TI  - Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 1161
EP  - 1177
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/
LA  - en
ID  - AFM_2021_46_2_a32
ER  - 
%0 Journal Article
%A Marcelo F. de Almeida
%A Lidiane S. M. Lima
%T Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces
%J Annales Fennici Mathematici
%D 2021
%P 1161-1177
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/
%G en
%F AFM_2021_46_2_a32
Marcelo F. de Almeida; Lidiane S. M. Lima. Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1161-1177. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a32/