Control of the bilinear indicator cube testing property
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1105-1122.

Voir la notice de l'article provenant de la source Journal.fi

  We show that the $\alpha$-fractional bilinear indicator/cube testing constant $\mathcal{BICT}_{T^{\alpha }}\left( \sigma ,\omega \right) \equiv \sup_{Q\in \mathcal{P}^{n}}\sup_{E,F\subset Q}\frac{1}{\sqrt{\left\vert Q\right\vert_{\sigma }\left\vert Q\right\vert _{\omega }}}\left\vert \int_{F}T_{\sigma}^{\alpha }\left( \mathbf{1}_{E}\right) \omega \right\vert ,$ defined for any $\alpha$-fractional singular integral $T^{\alpha }$ on $\mathbf{R}^{n}$ with $0<\alpha , is controlled by the classical $\alpha$-fractional Muckenhoupt constant $A_{2}^{\alpha }\left( \sigma ,\omega\right)$, provided the product measure $\sigma \times \omega$ is diagonally reverse doubling (in particular if it is reverse doubling) with exponent exceeding $2\left(n-\alpha \right)$. Moreover, this control is sharp within the class of diagonally reverse doubling product measures. In fact, every product measure $\mu \times \mu$, where $\mu$ is an Ahlfors-David regular measure $\mu$ with exponent $n-\alpha$, has diagonal exponent $2\left( n-\alpha \right)$ and satisfies $A_{2}^{\alpha }\left( \mu ,\mu \right)<\infty$ and $\mathcal{BICT}_{I^{\alpha }}\left( \mu ,\mu \right)=\infty$, which has implications for the $L^{2}$ trace inequality of the fractional integral $I^{\alpha}$ on domains with fractional boundary. When combined with the main results in arXiv:1906.05602, 1907.07571 and 1907.10734, the above control of $\mathcal{BICT}_{T^{\alpha }}$ for $\alpha>0$ yields a $T1$ theorem for doubling weights with appropriate diagonal reverse doubling, i.e. the norm inequality for $T^{\alpha}$ is controlled by cube testing constants and the $\alpha$-fractional one-tailed Muckenhoupt constants $\mathcal{A}_{2}^{\alpha }$ (without any energy assumptions), and also yields a corresponding cancellation condition theorem for the kernel of $T^{\alpha }$, both of which hold for arbitrary $\alpha$-fractional Calderón-Zygmund operators $T^{\alpha }$. We do not know if the analogous result for $\mathcal{BICT}_{H}\left(\sigma,\omega \right)$ holds for the Hilbert transform $H$ in case $\alpha=0$, but we show that $\mathcal{BICT}_{H^{\operatorname{dy}}}\left(\sigma ,\omega\right)$ is not controlled by the Muckenhoupt condition $\mathcal{A}_{2}^{\alpha }\left( \omega ,\sigma \right)$ for the dyadic Hilbert transform $H^{\operatorname{dy}}$ and doubling weights $\sigma ,\omega $$.
Keywords: Hilbert transform, T1 theorem, two weights, Muckenhoupt conditions, doubling weights, reverse doubling weights, energy conditions, bilinear indicator testing, Bellman function

Eric T. Sawyer 1 ; Ignacio Uriarte-Tuero 2

1 McMaster University, Department of Mathematics and Statistics
2 Michigan State University, Department of Mathematics
@article{AFM_2021_46_2_a28,
     author = {Eric T. Sawyer and Ignacio Uriarte-Tuero},
     title = {Control of the bilinear indicator cube testing property},
     journal = {Annales Fennici Mathematici},
     pages = {1105--1122},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a28/}
}
TY  - JOUR
AU  - Eric T. Sawyer
AU  - Ignacio Uriarte-Tuero
TI  - Control of the bilinear indicator cube testing property
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 1105
EP  - 1122
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a28/
LA  - en
ID  - AFM_2021_46_2_a28
ER  - 
%0 Journal Article
%A Eric T. Sawyer
%A Ignacio Uriarte-Tuero
%T Control of the bilinear indicator cube testing property
%J Annales Fennici Mathematici
%D 2021
%P 1105-1122
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a28/
%G en
%F AFM_2021_46_2_a28
Eric T. Sawyer; Ignacio Uriarte-Tuero. Control of the bilinear indicator cube testing property. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 1105-1122. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a28/