How to keep a spot cool?
Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 739-769.

Voir la notice de l'article provenant de la source Journal.fi

  Let $D$ be a planar domain, let $a$ be a reference point fixed in $D$, and let $b_k$, $k=1,\ldots,n$, be $n$ controlling points fixed in $D\setminus\{a\}$. Suppose further that each $b_k$ is connected to the boundary $\partial D$ by an arc $l_k$. In this paper, we propose the problem of finding a shape of arcs $l_k$, $k=1,\ldots,n$, which provides the minimum to the harmonic measure $\omega(a,\bigcup_{k=1}^n l_k,D\setminus \bigcup_{k=1}^n l_k)$. This problem can also be interpreted as a problem on the minimal temperature at $a$, in the steady-state regime, when the arcs $l_k$ are kept at constant temperature $T_1$ while the boundary $\partial D$ is kept at constant temperature $T_0. In this paper, we mainly discuss the first non-trivial case of this problem when $D$ is the unit disk $\mathbf{D}=\{z\colon|z|<1\}$ with the reference point $a=0$ and two controlling points $b_1=ir$, $b_2=-ir$, $0. It appears, that even in this case our minimization problem is highly nontrivial and the arcs $l_1$ and $l_2$ providing minimum for the harmonic measure are not the straight line segments as it could be expected from symmetry properties of the configuration of points under consideration.  
Keywords: Heat distribution, harmonic measure, quadratic differential, symmetrization

Alexander Yu. Solynin 1

1 Texas Tech University, Department of Mathematics and Statistics
@article{AFM_2021_46_2_a10,
     author = {Alexander Yu. Solynin},
     title = {How to keep a spot cool?},
     journal = {Annales Fennici Mathematici},
     pages = {739--769},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a10/}
}
TY  - JOUR
AU  - Alexander Yu. Solynin
TI  - How to keep a spot cool?
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 739
EP  - 769
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a10/
LA  - en
ID  - AFM_2021_46_2_a10
ER  - 
%0 Journal Article
%A Alexander Yu. Solynin
%T How to keep a spot cool?
%J Annales Fennici Mathematici
%D 2021
%P 739-769
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a10/
%G en
%F AFM_2021_46_2_a10
Alexander Yu. Solynin. How to keep a spot cool?. Annales Fennici Mathematici, Tome 46 (2021) no. 2, pp. 739-769. http://geodesic.mathdoc.fr/item/AFM_2021_46_2_a10/