Maximal operators and decoupling for Λ(p) Cantor measures
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 163-186.

Voir la notice de l'article provenant de la source Journal.fi

For $2\leq p<\infty$, $\alpha'>2/p$, and $\delta>0$, we construct Cantor-type measures on $\mathbf{R}$ supported on sets of Hausdorff dimension $\alpha<\alpha'$ for which the associated maximal operator is bounded from $L^p_\delta (\mathbf{R})$ to $L^p(\mathbf{R})$. Maximal theorems for fractal measures on the line were previously obtained by Laba and Pramanik [17]. The result here is weaker in that we are not able to obtain $L^p$ estimates; on the other hand, our approach allows Cantor measures that are self-similar, have arbitrarily low dimension $\alpha>0$, and have no Fourier decay. The proof is based on a decoupling inequality similar to that of Laba and Wang [18].  
Keywords: Maximal operators, Cantor sets, Hausdorff dimension, decoupling

Isabella Łaba 1

1 University of British Columbia, Department of Mathematics
@article{AFM_2021_46_1_a9,
     author = {Isabella {\L}aba},
     title = {Maximal operators and decoupling for {\ensuremath{\Lambda}(p)} {Cantor} measures},
     journal = {Annales Fennici Mathematici},
     pages = {163--186},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a9/}
}
TY  - JOUR
AU  - Isabella Łaba
TI  - Maximal operators and decoupling for Λ(p) Cantor measures
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 163
EP  - 186
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a9/
LA  - en
ID  - AFM_2021_46_1_a9
ER  - 
%0 Journal Article
%A Isabella Łaba
%T Maximal operators and decoupling for Λ(p) Cantor measures
%J Annales Fennici Mathematici
%D 2021
%P 163-186
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a9/
%G en
%F AFM_2021_46_1_a9
Isabella Łaba. Maximal operators and decoupling for Λ(p) Cantor measures. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 163-186. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a9/