Intrinsic regular surfaces of low codimension in Heisenberg groups
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 79-121
Voir la notice de l'article provenant de la source Journal.fi
In this paper we study intrinsic regular submanifolds of $\mathbf{H}^n$ of low codimension in relation with the regularity of their intrinsic parametrization. We extend some results proved for $\mathbf{H}$-regular surfaces of codimension 1 to $\mathbf{H}$-regular surfaces of codimension $k$, with $1 \leq k \leq n$. We characterize uniformly intrinsic differentiable functions, $\phi$, acting between two complementary subgroups of the Heisenberg group $\mathbf{H}^n$, with target space horizontal of dimension $k$, in terms of the Euclidean regularity of their components with respect to a family of non linear vector fields $\nabla^{\phi_j}$. Moreover, we show how the area of the intrinsic graph of $\phi$ can be computed in terms of the components of the matrix representing the intrinsic differential of $\phi$.
Keywords:
Heisenberg groups, H-regular surfaces, intrinsic graphs, intrinsic differentiability
Affiliations des auteurs :
Francesca Corni 1
@article{AFM_2021_46_1_a5,
author = {Francesca Corni},
title = {Intrinsic regular surfaces of low codimension in {Heisenberg} groups},
journal = {Annales Fennici Mathematici},
pages = {79--121},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a5/}
}
Francesca Corni. Intrinsic regular surfaces of low codimension in Heisenberg groups. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 79-121. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a5/