On the Riesz transforms for the inverse Gauss measure
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 433-448
Voir la notice de l'article provenant de la source Journal.fi
Let $\gamma_{-1}$ be the absolutely continuous measure on $\mathbf{R}^n$ whose density is the reciprocal of a Gaussian function. Let further $\mathscr{A}$ be the natural self-adjoint Laplacian on $L^2(\gamma_{-1})$. In this paper, we prove that the Riesz transforms associated with $\mathscr{A}$ of order one or two are of weak type $(1,1)$, but that those of higher order are not.
Keywords:
Inverse Gauss measure, Riesz transforms, weak type (1, 1)
Affiliations des auteurs :
Tommaso Bruno 1 ; Peter Sjögren 2
@article{AFM_2021_46_1_a24,
author = {Tommaso Bruno and Peter Sj\"ogren},
title = {On the {Riesz} transforms for the inverse {Gauss} measure},
journal = {Annales Fennici Mathematici},
pages = {433--448},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/}
}
Tommaso Bruno; Peter Sjögren. On the Riesz transforms for the inverse Gauss measure. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 433-448. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/