On the Riesz transforms for the inverse Gauss measure
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 433-448.

Voir la notice de l'article provenant de la source Journal.fi

Let $\gamma_{-1}$ be the absolutely continuous measure on $\mathbf{R}^n$ whose density is the reciprocal of a Gaussian function. Let further $\mathscr{A}$ be the natural self-adjoint Laplacian on $L^2(\gamma_{-1})$. In this paper, we prove that the Riesz transforms associated with $\mathscr{A}$ of order one or two are of weak type $(1,1)$, but that those of higher order are not.
Keywords: Inverse Gauss measure, Riesz transforms, weak type (1, 1)

Tommaso Bruno 1 ; Peter Sjögren 2

1 Politecnico di Torino, Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange" and Ghent University, Department of Mathematics: Analysis, Logic and Discrete Mathematics
2 Chalmers University of Technology, Mathematical Sciences and University of Gothenburg, Mathematical Sciences
@article{AFM_2021_46_1_a24,
     author = {Tommaso Bruno and Peter Sj\"ogren},
     title = {On the {Riesz} transforms for the inverse {Gauss} measure},
     journal = {Annales Fennici Mathematici},
     pages = {433--448},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/}
}
TY  - JOUR
AU  - Tommaso Bruno
AU  - Peter Sjögren
TI  - On the Riesz transforms for the inverse Gauss measure
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 433
EP  - 448
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/
LA  - en
ID  - AFM_2021_46_1_a24
ER  - 
%0 Journal Article
%A Tommaso Bruno
%A Peter Sjögren
%T On the Riesz transforms for the inverse Gauss measure
%J Annales Fennici Mathematici
%D 2021
%P 433-448
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/
%G en
%F AFM_2021_46_1_a24
Tommaso Bruno; Peter Sjögren. On the Riesz transforms for the inverse Gauss measure. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 433-448. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a24/