Following a Maz'ya-type approach, we adapt the theory of rough traces of functions of bounded variation (BV) to the context of doubling metric measure spaces supporting a Poincaré inequality. This eventually allows for an integration by parts formula involving the rough trace of such functions. We then compare our analysis with the study done in a recent work by Lahti and Shanmugalingam, where traces of BV functions are studied by means of the more classical Lebesgue-point characterization, and we determine the conditions under which the two notions coincide.
@article{AFM_2021_46_1_a16,
author = {Vito Buffa and Michele Miranda Jr.},
title = {Rough traces of {BV} functions in metric measure spaces},
journal = {Annales Fennici Mathematici},
pages = {309--333},
year = {2021},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/}
}
TY - JOUR
AU - Vito Buffa
AU - Michele Miranda Jr.
TI - Rough traces of BV functions in metric measure spaces
JO - Annales Fennici Mathematici
PY - 2021
SP - 309
EP - 333
VL - 46
IS - 1
UR - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/
LA - en
ID - AFM_2021_46_1_a16
ER -
%0 Journal Article
%A Vito Buffa
%A Michele Miranda Jr.
%T Rough traces of BV functions in metric measure spaces
%J Annales Fennici Mathematici
%D 2021
%P 309-333
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/
%G en
%F AFM_2021_46_1_a16
Vito Buffa; Michele Miranda Jr. Rough traces of BV functions in metric measure spaces. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 309-333. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/