Rough traces of BV functions in metric measure spaces
Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 309-333.

Voir la notice de l'article provenant de la source Journal.fi

Following a Maz'ya-type approach, we adapt the theory of rough traces of functions of bounded variation (BV) to the context of doubling metric measure spaces supporting a Poincaré inequality. This eventually allows for an integration by parts formula involving the rough trace of such functions. We then compare our analysis with the study done in a recent work by Lahti and Shanmugalingam, where traces of BV functions are studied by means of the more classical Lebesgue-point characterization, and we determine the conditions under which the two notions coincide.
Keywords: Functions of bounded variation, metric measure spaces, traces, integration by parts formulas

Vito Buffa 1 ; Michele Miranda Jr. 2

1 Bologna, Italy
2 University of Ferrara, Department of Mathematics and Computer Science
@article{AFM_2021_46_1_a16,
     author = {Vito Buffa and Michele Miranda Jr.},
     title = {Rough traces of {BV} functions in metric measure spaces},
     journal = {Annales Fennici Mathematici},
     pages = {309--333},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/}
}
TY  - JOUR
AU  - Vito Buffa
AU  - Michele Miranda Jr.
TI  - Rough traces of BV functions in metric measure spaces
JO  - Annales Fennici Mathematici
PY  - 2021
SP  - 309
EP  - 333
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/
LA  - en
ID  - AFM_2021_46_1_a16
ER  - 
%0 Journal Article
%A Vito Buffa
%A Michele Miranda Jr.
%T Rough traces of BV functions in metric measure spaces
%J Annales Fennici Mathematici
%D 2021
%P 309-333
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/
%G en
%F AFM_2021_46_1_a16
Vito Buffa; Michele Miranda Jr. Rough traces of BV functions in metric measure spaces. Annales Fennici Mathematici, Tome 46 (2021) no. 1, pp. 309-333. http://geodesic.mathdoc.fr/item/AFM_2021_46_1_a16/