Convex polytopes in restricted point sets in $\mathbb{R}^d$
Advances in Combinatronics (2025)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

For a finite point set $P \subset \mathbb{R}^d$, denote by $\text{diam}(P)$ the ratio of the largest to the smallest distances between pairs of points in $P$. Let $c_{d, \alpha}(n)$ be the largest integer $c$ such that any $n$-point set $P \subset \mathbb{R}^d$ in general position, satisfying $\text{diam}(P) \alpha\sqrt[d]{n}$, contains an $c$-point convex independent subset. We determine the asymptotics of $c_{d, \alpha}(n)$ as $n \to \infty$ by showing the existence of positive constants $\beta = \beta(d, \alpha)$ and $\gamma = \gamma(d)$ such that $\beta n^{\frac{d-1}{d+1}} \le c_{d, \alpha}(n) \le \gamma n^{\frac{d-1}{d+1}}$ for $\alpha\geq 2$.
Publié le :
@article{ADVC_2025_a5,
     author = {Boris Bukh and Zichao Dong},
     title = {Convex polytopes in restricted point sets in $\mathbb{R}^d$},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2025_a5/}
}
TY  - JOUR
AU  - Boris Bukh
AU  - Zichao Dong
TI  - Convex polytopes in restricted point sets in $\mathbb{R}^d$
JO  - Advances in Combinatronics
PY  - 2025
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2025_a5/
LA  - en
ID  - ADVC_2025_a5
ER  - 
%0 Journal Article
%A Boris Bukh
%A Zichao Dong
%T Convex polytopes in restricted point sets in $\mathbb{R}^d$
%J Advances in Combinatronics
%D 2025
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2025_a5/
%G en
%F ADVC_2025_a5
Boris Bukh; Zichao Dong. Convex polytopes in restricted point sets in $\mathbb{R}^d$. Advances in Combinatronics (2025). http://geodesic.mathdoc.fr/item/ADVC_2025_a5/