11/4-colorability of subcubic triangle-free graphs
Advances in Combinatronics (2025)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove that up to two exceptions, every connected subcubic triangle-free graph has fractional chromatic number at most 11/4. This is tight unless further exceptional graphs are excluded, and improves the known bound on the fractional chromatic number of subcubic triangle-free planar graphs.
Publié le :
@article{ADVC_2025_a1,
     author = {Zden\v{e}k Dvo\v{r}\'ak and Bernard Lidick\'y and Luke Postle},
     title = {11/4-colorability of subcubic triangle-free graphs},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2025_a1/}
}
TY  - JOUR
AU  - Zdeněk Dvořák
AU  - Bernard Lidický
AU  - Luke Postle
TI  - 11/4-colorability of subcubic triangle-free graphs
JO  - Advances in Combinatronics
PY  - 2025
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2025_a1/
LA  - en
ID  - ADVC_2025_a1
ER  - 
%0 Journal Article
%A Zdeněk Dvořák
%A Bernard Lidický
%A Luke Postle
%T 11/4-colorability of subcubic triangle-free graphs
%J Advances in Combinatronics
%D 2025
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2025_a1/
%G en
%F ADVC_2025_a1
Zdeněk Dvořák; Bernard Lidický; Luke Postle. 11/4-colorability of subcubic triangle-free graphs. Advances in Combinatronics (2025). http://geodesic.mathdoc.fr/item/ADVC_2025_a1/