The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$
Advances in Combinatronics (2024)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove the Kakeya set conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$ as stated by Hickman and Wright [HW18]. This entails extending and combining the techniques of Arsovski [Ars21a] for $N=p^k$ and the author and Dvir [DD21] for the case of square-free $N$. We also prove stronger lower bounds for the size of $(m,\epsilon)$-Kakeya sets over $\mathbb{Z}/p^k\mathbb{Z}$ by extending the techniques of [Ars21a] using multiplicities as was done in [SS08, DKSS13]. In addition, we show our bounds are almost sharp by providing a new construction for Kakeya sets over $\mathbb{Z}/p^k\mathbb{Z}$ and $\mathbb{Z}/N\mathbb{Z}$.
Publié le :
@article{ADVC_2024_a5,
     author = {Manik Dhar},
     title = {The {Kakeya} {Set} {Conjecture} for $\mathbb{Z}/N\mathbb{Z}$ for general $N$},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2024_a5/}
}
TY  - JOUR
AU  - Manik Dhar
TI  - The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$
JO  - Advances in Combinatronics
PY  - 2024
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2024_a5/
LA  - en
ID  - ADVC_2024_a5
ER  - 
%0 Journal Article
%A Manik Dhar
%T The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$
%J Advances in Combinatronics
%D 2024
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2024_a5/
%G en
%F ADVC_2024_a5
Manik Dhar. The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$. Advances in Combinatronics (2024). http://geodesic.mathdoc.fr/item/ADVC_2024_a5/