The sparse parity matrix
Advances in Combinatronics (2023)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

Let $\mathbf{A}$ be an $n\times n$-matrix over $\mathbb{F}_2$ whose every entry equals $1$ with probability $d/n$ independently for a fixed $d>0$. Draw a vector $\mathbf{y}$ randomly from the column space of $\mathbf{A}$. It is a simple observation that the entries of a random solution $\mathbf{x}$ to $\mathbf{A} x=\mathbf{y}$ are asymptotically pairwise independent, i.e., $\sum_{i$ for $s,t\in\mathbb{F}_2$. But what can we say about the {\em overlap} of two random solutions $\mathbf{x},\mathbf{x}'$, defined as $n^{-1}\sum_{i=1}^n\mathbf{1}\{\mathbf{x}_i=\mathbf{x}_i'\}$? We prove that for $d\mathrm{e}$ the overlap concentrates on a single deterministic value $\alpha_*(d)$. By contrast, for $d>\mathrm{e}$ the overlap concentrates on a single value once we condition on the matrix $\mathbf{A}$, while over the probability space of $\mathbf{A}$ its conditional expectation vacillates between two different values $\alpha_*(d)\alpha^*(d)$, either of which occurs with probability $1/2+o(1)$. This bifurcated non-concentration result provides an instructive contribution to both the theory of random constraint satisfaction problems and of inference problems on random structures.
Publié le :
@article{ADVC_2023_a2,
     author = {Amin Coja-Oghlan and Oliver Cooley and Mihyun Kang and Joon Lee and Jean Bernoulli Ravelomanana},
     title = {The sparse parity matrix},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2023_a2/}
}
TY  - JOUR
AU  - Amin Coja-Oghlan
AU  - Oliver Cooley
AU  - Mihyun Kang
AU  - Joon Lee
AU  - Jean Bernoulli Ravelomanana
TI  - The sparse parity matrix
JO  - Advances in Combinatronics
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2023_a2/
LA  - en
ID  - ADVC_2023_a2
ER  - 
%0 Journal Article
%A Amin Coja-Oghlan
%A Oliver Cooley
%A Mihyun Kang
%A Joon Lee
%A Jean Bernoulli Ravelomanana
%T The sparse parity matrix
%J Advances in Combinatronics
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2023_a2/
%G en
%F ADVC_2023_a2
Amin Coja-Oghlan; Oliver Cooley; Mihyun Kang; Joon Lee; Jean Bernoulli Ravelomanana. The sparse parity matrix. Advances in Combinatronics (2023). http://geodesic.mathdoc.fr/item/ADVC_2023_a2/