Separating the edges of a graph by a linear number of paths
Advances in Combinatronics (2023)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
Recently, Letzter proved that any graph of order $n$ contains a collection
$\mathcal{P}$ of $O(n\log^\star n)$ paths with the following property: for all
distinct edges $e$ and $f$ there exists a path in $\mathcal{P}$ which contains
$e$ but not $f$. We improve this upper bound to $19 n$, thus answering a
question of G.O.H. Katona and confirming a conjecture independently posed by
Balogh, Csaba, Martin, and Pluh\'ar and by Falgas-Ravry, Kittipassorn,
Kor\'andi, Letzter, and Narayanan. Our proof is elementary and self-contained.
Publié le :
@article{ADVC_2023_a1,
author = {Marthe Bonamy and F\'abio Botler and Fran\c{c}ois Dross and T\'assio Naia and Jozef Skokan},
title = {Separating the edges of a graph by a linear number of paths},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2023_a1/}
}
TY - JOUR AU - Marthe Bonamy AU - Fábio Botler AU - François Dross AU - Tássio Naia AU - Jozef Skokan TI - Separating the edges of a graph by a linear number of paths JO - Advances in Combinatronics PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADVC_2023_a1/ LA - en ID - ADVC_2023_a1 ER -
Marthe Bonamy; Fábio Botler; François Dross; Tássio Naia; Jozef Skokan. Separating the edges of a graph by a linear number of paths. Advances in Combinatronics (2023). http://geodesic.mathdoc.fr/item/ADVC_2023_a1/