Asymptotic enumeration of hypergraphs by degree sequence
Advances in Combinatronics (2022)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs on $n$ vertices provided that $dn\le c\binom{n}{k}$ for a constant $c>0$, and $3 \leq k n^C$ for any $C1/9.$ Our results relate the degree sequence of a random $k$-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author.
Publié le :
@article{ADVC_2022_a8,
     author = {Nina Kam\v{c}ev and Anita Liebenau and Nick Wormald},
     title = {Asymptotic enumeration of hypergraphs by degree sequence},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a8/}
}
TY  - JOUR
AU  - Nina Kamčev
AU  - Anita Liebenau
AU  - Nick Wormald
TI  - Asymptotic enumeration of hypergraphs by degree sequence
JO  - Advances in Combinatronics
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a8/
LA  - en
ID  - ADVC_2022_a8
ER  - 
%0 Journal Article
%A Nina Kamčev
%A Anita Liebenau
%A Nick Wormald
%T Asymptotic enumeration of hypergraphs by degree sequence
%J Advances in Combinatronics
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a8/
%G en
%F ADVC_2022_a8
Nina Kamčev; Anita Liebenau; Nick Wormald. Asymptotic enumeration of hypergraphs by degree sequence. Advances in Combinatronics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a8/