Asymptotic enumeration of hypergraphs by degree sequence
Advances in Combinatorics (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs on $n$ vertices provided that $dn\le c\binom{n}{k}$ for a constant $c>0$, and $3 \leq k n^C$ for any $C1/9.$ Our results relate the degree sequence of a random $k$-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author.
Publié le :
@article{ADVC_2022_a8,
     author = {Nina Kam\v{c}ev and Anita Liebenau and Nick Wormald},
     title = {Asymptotic enumeration of hypergraphs by degree sequence},
     journal = {Advances in Combinatorics},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a8/}
}
TY  - JOUR
AU  - Nina Kamčev
AU  - Anita Liebenau
AU  - Nick Wormald
TI  - Asymptotic enumeration of hypergraphs by degree sequence
JO  - Advances in Combinatorics
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a8/
LA  - en
ID  - ADVC_2022_a8
ER  - 
%0 Journal Article
%A Nina Kamčev
%A Anita Liebenau
%A Nick Wormald
%T Asymptotic enumeration of hypergraphs by degree sequence
%J Advances in Combinatorics
%D 2022
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a8/
%G en
%F ADVC_2022_a8
Nina Kamčev; Anita Liebenau; Nick Wormald. Asymptotic enumeration of hypergraphs by degree sequence. Advances in Combinatorics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a8/