The number of partial Steiner systems and $d$-partitions
Advances in Combinatronics (2022)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We prove asymptotic upper bounds on the number of $d$-partitions (paving matroids of fixed rank) and partial Steiner systems (sparse paving matroids of fixed rank), using a mixture of entropy counting, sparse encoding, and the probabilistic method.
Publié le :
@article{ADVC_2022_a7,
     author = {Remco van der Hofstad and Rudi Pendavingh and Jorn van der Pol},
     title = {The number of partial {Steiner} systems and $d$-partitions},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a7/}
}
TY  - JOUR
AU  - Remco van der Hofstad
AU  - Rudi Pendavingh
AU  - Jorn van der Pol
TI  - The number of partial Steiner systems and $d$-partitions
JO  - Advances in Combinatronics
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a7/
LA  - en
ID  - ADVC_2022_a7
ER  - 
%0 Journal Article
%A Remco van der Hofstad
%A Rudi Pendavingh
%A Jorn van der Pol
%T The number of partial Steiner systems and $d$-partitions
%J Advances in Combinatronics
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a7/
%G en
%F ADVC_2022_a7
Remco van der Hofstad; Rudi Pendavingh; Jorn van der Pol. The number of partial Steiner systems and $d$-partitions. Advances in Combinatronics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a7/