Transversal factors and spanning trees
Advances in Combinatorics (2022)
Cet article a éte moissonné depuis la source Scholastica
Given a collection of graphs $\mathbf{G}=(G_1, \ldots, G_m)$ with the same vertex set, an $m$-edge graph $H\subset \cup_{i\in [m]}G_i$ is a transversal if there is a bijection $φ:E(H)\to [m]$ such that $e\in E(G_{φ(e)})$ for each $e\in E(H)$. We give asymptotically-tight minimum degree conditions for a graph collection on an $n$-vertex set to have a transversal which is a copy of a graph $H$, when $H$ is an $n$-vertex graph which is an $F$-factor or a tree with maximum degree $o(n/\log n)$.
@article{ADVC_2022_a6,
author = {Richard Montgomery and Alp M\"uyesser and Yanitsa Pehova},
title = {Transversal factors and spanning trees},
journal = {Advances in Combinatorics},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a6/}
}
Richard Montgomery; Alp Müyesser; Yanitsa Pehova. Transversal factors and spanning trees. Advances in Combinatorics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a6/