Transversal factors and spanning trees
Advances in Combinatronics (2022)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

Given a collection of graphs $\mathbf{G}=(G_1, \ldots, G_m)$ with the same vertex set, an $m$-edge graph $H\subset \cup_{i\in [m]}G_i$ is a transversal if there is a bijection $\phi:E(H)\to [m]$ such that $e\in E(G_{\phi(e)})$ for each $e\in E(H)$. We give asymptotically-tight minimum degree conditions for a graph collection on an $n$-vertex set to have a transversal which is a copy of a graph $H$, when $H$ is an $n$-vertex graph which is an $F$-factor or a tree with maximum degree $o(n/\log n)$.
Publié le :
@article{ADVC_2022_a6,
     author = {Richard Montgomery and Alp M\"uyesser and Yanitsa Pehova},
     title = {Transversal factors and spanning trees},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a6/}
}
TY  - JOUR
AU  - Richard Montgomery
AU  - Alp Müyesser
AU  - Yanitsa Pehova
TI  - Transversal factors and spanning trees
JO  - Advances in Combinatronics
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a6/
LA  - en
ID  - ADVC_2022_a6
ER  - 
%0 Journal Article
%A Richard Montgomery
%A Alp Müyesser
%A Yanitsa Pehova
%T Transversal factors and spanning trees
%J Advances in Combinatronics
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a6/
%G en
%F ADVC_2022_a6
Richard Montgomery; Alp Müyesser; Yanitsa Pehova. Transversal factors and spanning trees. Advances in Combinatronics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a6/