Transversal factors and spanning trees
Advances in Combinatronics (2022)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
Given a collection of graphs $\mathbf{G}=(G_1, \ldots, G_m)$ with the same
vertex set, an $m$-edge graph $H\subset \cup_{i\in [m]}G_i$ is a transversal if
there is a bijection $\phi:E(H)\to [m]$ such that $e\in E(G_{\phi(e)})$ for
each $e\in E(H)$. We give asymptotically-tight minimum degree conditions for a
graph collection on an $n$-vertex set to have a transversal which is a copy of
a graph $H$, when $H$ is an $n$-vertex graph which is an $F$-factor or a tree
with maximum degree $o(n/\log n)$.
Publié le :
@article{ADVC_2022_a6,
author = {Richard Montgomery and Alp M\"uyesser and Yanitsa Pehova},
title = {Transversal factors and spanning trees},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a6/}
}
Richard Montgomery; Alp Müyesser; Yanitsa Pehova. Transversal factors and spanning trees. Advances in Combinatronics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a6/