Leaper Tours
Advances in Combinatorics (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $p$ and $q$ be positive integers. The $(p, q)$-leaper $L$ is a generalised knight which leaps $p$ units away along one coordinate axis and $q$ units away along the other. Consider a free $L$, meaning that $p + q$ is odd and $p$ and $q$ are relatively prime. We prove that $L$ tours the board of size $4pq \times n$ for all sufficiently large positive integers $n$. Combining this with the recently established conjecture of Willcocks which states that $L$ tours the square board of side $2(p + q)$, we conclude that furthermore $L$ tours all boards both of whose sides are even and sufficiently large. This, in particular, completely resolves the question of the Hamiltonicity of leaper graphs on sufficiently large square boards.
Publié le :
@article{ADVC_2022_a5,
     author = {Nikolai Beluhov},
     title = {Leaper {Tours}},
     journal = {Advances in Combinatorics},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a5/}
}
TY  - JOUR
AU  - Nikolai Beluhov
TI  - Leaper Tours
JO  - Advances in Combinatorics
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a5/
LA  - en
ID  - ADVC_2022_a5
ER  - 
%0 Journal Article
%A Nikolai Beluhov
%T Leaper Tours
%J Advances in Combinatorics
%D 2022
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a5/
%G en
%F ADVC_2022_a5
Nikolai Beluhov. Leaper Tours. Advances in Combinatorics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a5/