Rational exponents near two
Advances in Combinatronics (2022)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

A longstanding conjecture of Erd\H{o}s and Simonovits states that for every rational $r$ between $1$ and $2$ there is a graph $H$ such that the largest number of edges in an $H$-free graph on $n$ vertices is $\Theta(n^r)$. Answering a question raised by Jiang, Jiang and Ma, we show that the conjecture holds for all rationals of the form $2 - a/b$ with $b$ sufficiently large in terms of $a$.
Publié le :
@article{ADVC_2022_a0,
     author = {David Conlon and Oliver Janzer},
     title = {Rational exponents near two},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2022_a0/}
}
TY  - JOUR
AU  - David Conlon
AU  - Oliver Janzer
TI  - Rational exponents near two
JO  - Advances in Combinatronics
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2022_a0/
LA  - en
ID  - ADVC_2022_a0
ER  - 
%0 Journal Article
%A David Conlon
%A Oliver Janzer
%T Rational exponents near two
%J Advances in Combinatronics
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2022_a0/
%G en
%F ADVC_2022_a0
David Conlon; Oliver Janzer. Rational exponents near two. Advances in Combinatronics (2022). http://geodesic.mathdoc.fr/item/ADVC_2022_a0/