An aperiodic set of 11 Wang tiles
Advances in Combinatronics (2021)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by Wang in 1961.
Publié le :
@article{ADVC_2021_a8,
     author = {Emmanuel Jeandel and Michael Rao},
     title = {An aperiodic set of 11 {Wang} tiles},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a8/}
}
TY  - JOUR
AU  - Emmanuel Jeandel
AU  - Michael Rao
TI  - An aperiodic set of 11 Wang tiles
JO  - Advances in Combinatronics
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2021_a8/
LA  - en
ID  - ADVC_2021_a8
ER  - 
%0 Journal Article
%A Emmanuel Jeandel
%A Michael Rao
%T An aperiodic set of 11 Wang tiles
%J Advances in Combinatronics
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2021_a8/
%G en
%F ADVC_2021_a8
Emmanuel Jeandel; Michael Rao. An aperiodic set of 11 Wang tiles. Advances in Combinatronics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a8/