The size-Ramsey number of 3-uniform tight paths
Advances in Combinatronics (2021)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
Given a hypergraph $H$, the size-Ramsey number $\hat{r}_2(H)$ is the smallest
integer $m$ such that there exists a graph $G$ with $m$ edges with the property
that in any colouring of the edges of $G$ with two colours there is a
monochromatic copy of $H$. We prove that the size-Ramsey number of the
$3$-uniform tight path on $n$ vertices $P^{(3)}_n$ is linear in $n$, i.e.,
$\hat{r}_2(P^{(3)}_n) = O(n)$. This answers a question by Dudek, Fleur, Mubayi,
and R\"odl for $3$-uniform hypergraphs [On the size-Ramsey number of
hypergraphs, J. Graph Theory 86 (2016), 417-434], who proved
$\hat{r}_2(P^{(3)}_n) = O(n^{3/2} \log^{3/2} n)$.
Publié le :
@article{ADVC_2021_a4,
author = {Jie Han and Yoshiharu Kohayakawa and Shoham Letzter and Guilherme Oliveira Mota and Olaf Parczyk},
title = {The {size-Ramsey} number of 3-uniform tight paths},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a4/}
}
TY - JOUR AU - Jie Han AU - Yoshiharu Kohayakawa AU - Shoham Letzter AU - Guilherme Oliveira Mota AU - Olaf Parczyk TI - The size-Ramsey number of 3-uniform tight paths JO - Advances in Combinatronics PY - 2021 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADVC_2021_a4/ LA - en ID - ADVC_2021_a4 ER -
Jie Han; Yoshiharu Kohayakawa; Shoham Letzter; Guilherme Oliveira Mota; Olaf Parczyk. The size-Ramsey number of 3-uniform tight paths. Advances in Combinatronics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a4/