Anticoncentration versus the number of subset sums
Advances in Combinatronics (2021)
Voir la notice de l'article provenant de la source Advances in Combinatronics website
Let $\vec{w} = (w_1,\dots, w_n) \in \mathbb{R}^{n}$. We show that for any
$n^{-2}\le\epsilon\le 1$, if \[\#\{\vec{\xi} \in \{0,1\}^{n}: \langle
\vec{\xi}, \vec{w} \rangle = \tau\} \ge 2^{-\epsilon n}\cdot 2^{n}\] for some
$\tau \in \mathbb{R}$, then \[\#\{\langle \vec{\xi}, \vec{w} \rangle :
\vec{\xi} \in \{0,1\}^{n}\} \le 2^{O(\sqrt{\epsilon}n)}.\] This exponentially
improves the $\epsilon$ dependence in a recent result of Nederlof, Pawlewicz,
Swennenhuis, and W\k{e}grzycki and leads to a similar improvement in the
parameterized (by the number of bins) runtime of bin packing.
Publié le :
@article{ADVC_2021_a3,
author = {Vishesh Jain and Ashwin Sah and Mehtaab Sawhney},
title = {Anticoncentration versus the number of subset sums},
journal = {Advances in Combinatronics},
publisher = {mathdoc},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a3/}
}
Vishesh Jain; Ashwin Sah; Mehtaab Sawhney. Anticoncentration versus the number of subset sums. Advances in Combinatronics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a3/