Anticoncentration versus the number of subset sums
Advances in Combinatorics (2021)
Cet article a éte moissonné depuis la source Scholastica
Let $\vec{w} = (w_1,\dots, w_n) \in \mathbb{R}^{n}$. We show that for any $n^{-2}\leε\le 1$, if \[\#\{\vecξ \in \{0,1\}^{n}: \langle \vecξ, \vec{w} \rangle = τ\} \ge 2^{-εn}\cdot 2^{n}\] for some $τ\in \mathbb{R}$, then \[\#\{\langle \vecξ, \vec{w} \rangle : \vecξ \in \{0,1\}^{n}\} \le 2^{O(\sqrtεn)}.\] This exponentially improves the $ε$ dependence in a recent result of Nederlof, Pawlewicz, Swennenhuis, and Węgrzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.
@article{ADVC_2021_a3,
author = {Vishesh Jain and Ashwin Sah and Mehtaab Sawhney},
title = {Anticoncentration versus the number of subset sums},
journal = {Advances in Combinatorics},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADVC_2021_a3/}
}
Vishesh Jain; Ashwin Sah; Mehtaab Sawhney. Anticoncentration versus the number of subset sums. Advances in Combinatorics (2021). http://geodesic.mathdoc.fr/item/ADVC_2021_a3/