A tight Erdős-Pósa function for planar minors
Advances in Combinatronics (2019)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

Let $H$ be a planar graph. By a classical result of Robertson and Seymour, there is a function $f:\mathbb{N} \to \mathbb{R}$ such that for all $k \in \mathbb{N}$ and all graphs $G$, either $G$ contains $k$ vertex-disjoint subgraphs each containing $H$ as a minor, or there is a subset $X$ of at most $f(k)$ vertices such that $G-X$ has no $H$-minor. We prove that this remains true with $f(k) = c k \log k$ for some constant $c=c(H)$. This bound is best possible, up to the value of $c$, and improves upon a recent result of Chekuri and Chuzhoy [STOC 2013], who established this with $f(k) = c k \log^d k$ for some universal constant $d$. The proof is constructive and yields a polynomial-time $O(\log \mathsf{OPT})$-approximation algorithm for packing subgraphs containing an $H$-minor.
Publié le :
@article{ADVC_2019_a3,
     author = {Wouter Cames van Batenburg and Tony Huynh and Gwena\"el Joret and Jean-Florent Raymond},
     title = {A tight {Erd\H{o}s-P\'osa} function for planar minors},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a3/}
}
TY  - JOUR
AU  - Wouter Cames van Batenburg
AU  - Tony Huynh
AU  - Gwenaël Joret
AU  - Jean-Florent Raymond
TI  - A tight Erdős-Pósa function for planar minors
JO  - Advances in Combinatronics
PY  - 2019
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2019_a3/
LA  - en
ID  - ADVC_2019_a3
ER  - 
%0 Journal Article
%A Wouter Cames van Batenburg
%A Tony Huynh
%A Gwenaël Joret
%A Jean-Florent Raymond
%T A tight Erdős-Pósa function for planar minors
%J Advances in Combinatronics
%D 2019
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2019_a3/
%G en
%F ADVC_2019_a3
Wouter Cames van Batenburg; Tony Huynh; Gwenaël Joret; Jean-Florent Raymond. A tight Erdős-Pósa function for planar minors. Advances in Combinatronics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a3/